PREPARED BY:



65 MILLET STREET 802.434.4500

Fax: 802.434.6076

SUITE 301 RICHMOND, VT 05477 WWW.ECSCONSULT.COM

# **TABLE OF CONTENTS**

## **EXECUTIVE SUMMARY**

| 1.0    | INTR       | ODUCTION                                                                                               | 1  |
|--------|------------|--------------------------------------------------------------------------------------------------------|----|
|        | 1.1        | Objectives and Scope of Work                                                                           |    |
|        | 1.2        | Site Description and Physical Setting                                                                  |    |
|        | 1.3        | Site Reconnaissance                                                                                    |    |
|        | 1.4        | Oil Storage                                                                                            |    |
|        | 1.5        | Nearby High Risk Properties                                                                            |    |
|        |            | 1.5.1 Lewis Oil Company                                                                                |    |
|        |            | 1.5.2 Former Canadian Pacific Railroad                                                                 |    |
|        |            | 1.5.3 Former Northern Petroleum Bulk Plant / Current Office Site                                       |    |
|        |            | 1.5.4 Lawrence Sangravco                                                                               |    |
|        |            | <ul><li>1.5.5 Former Ralston Purina</li><li>1.5.6 Carlet, Gilson, and Hurley</li></ul>                 |    |
|        |            | <ul><li>1.5.6 Carlet, Gilson, and Hurley</li><li>1.5.7 Windshield World (Archilles Property)</li></ul> |    |
|        |            | 1.5.8 Upgradient Gasoline Stations                                                                     |    |
|        |            | 1.5.0 Opgradient Gusonne Stations                                                                      |    |
| 2.0    | INVE       | STIGATIVE PROCEDURES AND RESULTS                                                                       | 6  |
|        | 2.1        | Soil Boring / Monitoring Well Installation                                                             |    |
|        | 2.2        | Soil-Screening Results                                                                                 |    |
|        | 2.3        | Soil-Sampling Results                                                                                  |    |
|        | 2.4        | Groundwater Characteristics                                                                            |    |
|        | 2.5        | Sampling and Analysis                                                                                  |    |
| 3.0    | CONO       | CEPTUAL SITE MODEL                                                                                     | 10 |
|        | 3.1        | Northwester Contaminant Plume                                                                          |    |
|        | 3.2        | Southeastern Contaminant Plume                                                                         |    |
| 4.0    | SENS       | ITIVE RECEPTOR SURVEY AND RISK ASSESSMENT                                                              | 11 |
| •••    | 4.1        | Sensitive Receptor Survey                                                                              |    |
|        | 4.2        | Risk Assessment                                                                                        |    |
|        |            |                                                                                                        |    |
| 5.0    | CONC       | CLUSIONS                                                                                               | 12 |
| 6.0    | RECO       | DMMENDATIONS                                                                                           | 14 |
| 7.0    | REFE       | RENCES                                                                                                 | 15 |
|        |            |                                                                                                        |    |
| FIGU   | <u>RES</u> |                                                                                                        |    |
| Figure | 1          | Site Location Map                                                                                      |    |
| Figure |            | Site Plan                                                                                              |    |
| Figure |            | Area Map                                                                                               |    |
| Figure |            | Soil Contaminant Distribution Map – Above Water Table                                                  |    |
| Figure | 5          | Soil Contaminant Distribution Map – Below Water Table                                                  |    |
| Figure | 6          | Groundwater Flow Direction Map                                                                         |    |
| Figure | 7          | Groundwater Contaminant Distribution Map                                                               |    |

### **TABLES**

| Table 1 | Summary of Highest PID Readings      |
|---------|--------------------------------------|
| Table 2 | Groundwater Elevation Calculations   |
| Table 3 | Summary of Soil Analytical Results   |
| Toblo 1 | Summary of Croundwater Analytical D. |

Summary of Groundwater Analytical Results Table 4

# **APPENDICES**

Appendix A Appendix B Appendix C Boring Logs / Monitoring Well Construction Diagrams

Field Notes

Laboratory Reports

#### **EXECUTIVE SUMMARY**

Environmental Compliance Services, Inc. (ECS) has conducted a site investigation (SI) at the Northern Petroleum Bulk Storage Plant, located at 521 Bay Street in St. Johnsbury, Vermont. The SI was initiated to evaluate the degree and extent of soil and groundwater contamination from petroleum releases at the site, which were considered likely as a result of the reported multiple-decade history of petroleum bulk storage at the site. The SI included a preliminary site evaluation, which included a records review and site inspection, to assist in identifying potential historical contaminant sources. Subsurface investigative activities included the advancement of 32 soil borings, of which 21 were completed as monitoring wells, and an evaluation of potential threats to nearby sensitive receptors. The site and surrounding properties are serviced by municipal water supply and wastewater services. ECS's findings related to this work are summarized as follows:

- Soil and groundwater at the site have been impacted with petroleum-related volatile organic compounds (VOCs) associated with both on-site and off-site sources. Although our preliminary investigation disclosed several potential on- and off-site sources, no obvious source or sources were identified. Potential onsite sources identified include the current and former bulk oil storage aboveground storage tanks (ASTs), current and historical onsite loading and unloading operations, and current and former onsite heating oil underground storage tanks (USTs). Potential offsite sources identified include current and historical bulk storage ASTs (Lewis Oil and former Northern Petroleum bulk plant / office site), historical loading and unloading operations (Lewis Oil, Northern Petroleum former bulk plant / current office site, and former Canadian Pacific Railway), current and former petroleum storage USTs (Windshield World, Lawrence Sangravco, Mobil and Irving Oil), and nearby reported or unreported spills (Lewis Oil).
- The downgradient extent of the contamination appears to be adequately defined. Petroleum contamination exceeding Vermont Groundwater Enforcement Standards (VGESs) extends less than approximately 40 feet downgradient of the site.
- Petroleum contamination appears to have migrated onto the site from one or more upgradient off-site sources. Free-phase petroleum product was detected on the western side of Bay Street, upgradient of the site (MW-28). This location is approximately 40 feet north of existing well MW-102 on the Lewis Oil bulk storage plant. The source of this free product is unknown, but likely originated from a source other than the Northern Petroleum bulk plant. The upgradient extent of groundwater contamination in this area has not been defined.
- The VGESs were exceeded for one or more petroleum hydrocarbons in eleven monitoring wells including one offsite well (MW-8, located less than ten feet east (downgradient) of the southeastern property boundary). Total benzene, toluene, ethylbenzene, and total xylenes (BTEX) concentrations in these wells ranged from 17.7 μg/L in offsite well MW-8 to 19,440 μg/L in onsite well MW-19. The gasoline additive methyl tert-butyl ether (MTBE) was detected in eight onsite and one offsite wells at concentrations ranging from 4.9 to 6,980 μg/L.
- Free-phase product was measured in offsite wells MW-7 and MW-28 at a thickness of 0.05 and 0.02 feet, respectively. Approximately 0.03 feet of floating product were observed on groundwater in on-site monitoring wells MW-17 and MW-19. TPH in MW-7 was identified as #2 fuel oil; TPH was unidentified in the remaining samples, but calculated as #2 fuel oil and gasoline in MW-17 and MW-19, and gasoline in MW-28.
- An underground water line and a possible second line of unknown nature were identified along the eastern and western sides of Bay Street. Based on the distribution of contaminants along Bay

#### **EXECUTIVE SUMMARY**

Street, and the depth to groundwater in this area, the underground utilities in this area are considered to represent potential exposure and preferential-migration pathways.

- The soils encountered during drilling generally consisted of fine sand with little silt from the ground surface to depths of eight to ten feet. Coarse sand and gravel were encountered in the water table below the fine silty sand layers in several borings. Bedrock was not encountered during the drilling program. Depths to groundwater in the on-site monitoring wells ranged from 3.75 feet (MW-11) to 5.80 feet (MW-17) below top-of-casing.
- During the onsite and off-site soil-boring programs, photoionization detector (PID) readings ranging from 0.0 to 585 parts per million (ppm) were obtained from soil samples collected from the soil borings. Elevated PID readings between 145 and 585 ppm were obtained on soils immediately below ground surface at three soil borings (MW-1, MW-17, and MW-18) located in the northern and central portion of the site, suggesting that this is a likely source area. Currently, there is no ground cover in this area, but the area is located within the gated property boundary of the current bulk plant, limiting access to the general public. Since access to impacted soils in this area is limited, and assuming that the site is to continue to operate as a bulk storage facility, the risk to human exposure is moderate to low. If, however, the site were to undergo construction activities or change operations, then this risk would be expected to increase.
- The groundwater in the unconfined surficial aquifer at the site appears to flow generally southeast toward the Passumpsic River, which is located approximately 700 feet east of the site. No stormwater catchbasins potentially leading to the river were identified onsite or southeast of site. Based on the observed contaminant distribution in groundwater, it is unlikely that the Passumpsic River is impacted or threatened by petroleum contamination from the site.

On the basis of the results of this investigation and the conclusions stated above, ECS recommends the following:

- 1. Given the industrial nature of the surrounding area, the current absence of free product in recoverable amounts, and the relatively low risk of impact to sensitive receptors, active remediation does not appear to be warranted at this time. However, if recoverable amounts of floating free product are discovered in any of the wells, if underground utilities along Bay Street are determined to be been impacted, if site use changes, or if subsequent site monitoring results indicate that VGESs are not likely to be reduced within a reasonable time frame, corrective action will likely be required.
- 2. The site owner of the Lewis Oil property should be contacted to evaluate the source and extent of groundwater contamination in the vicinity of MW-28.
- 3. An additional round of groundwater monitoring is recommended at the site in the January of 2006. Groundwater samples should be collected from all onsite and offsite monitoring wells that do not contain free product, including Lewis Oil site wells MW-2, MW-101, and MW-102, if possible. Samples should be analyzed for EPA Method 8021B-list of VOCs.
- 4. Upon completion of the work activities, a summary report should be prepared which includes boring logs, well construction details, water-quality analytical results, figures showing groundwater flow direction and contaminant distribution, relevant tables, and recommendations for further action.

## **EXECUTIVE SUMMARY**

5. The underground utilities along Bay Street should be further evaluated to determine whether these utilities are acting as a preferential-migration pathway, and to evaluate whether any subsurface structures, such as manholes and catch basins, may have been impacted. The St. Johnsbury Water Department should be notified of the potential groundwater contamination in this area. Appropriate precautionary and safety measures should be incorporated with any utility work in this area.

#### 1.0 INTRODUCTION

Doc. No. 08-204262.00-ISI.doc

December 2005

Page 1

This report details the results of a Site Investigation (SI) performed by Environmental Compliance Services (ECS) at the Northern Petroleum Bulk Storage Plant, located at 521 Bay Street in St. Johnsbury, Vermont. This work was performed in accordance with the technical elements in ECS proposals dated June 30 and August 12, which were approved by the State of Vermont on July 13 and August 29, 2005.

#### 1.1 OBJECTIVES AND SCOPE OF WORK

The objectives of this site investigation were to:

- Evaluate potential historical contaminant sources, which were considered likely as a result of the reported multiple-decade history of petroleum bulk storage at the site;
- Evaluate the degree and extent of petroleum contamination in soil and groundwater in the vicinity of likely contaminant-source areas, including identified current and historical locations of petroleum storage and use, and along the upgradient edge of the property across from the Lewis Oil site;
- Qualitatively assess the risks to environmental and public health via relevant sensitive receptors and potential contaminant migration pathways; and
- Identify appropriate monitoring and/or remedial actions based on the site conditions.

To accomplish these objectives, ECS has:

- Reviewed available historical documents including aerial photographs and Sanborn Fire Insurance Maps;
- Interviewed facility staff, a former site occupant, and other knowledgeable persons;
- Reviewed available environmental reports on the site and nearby properties;
- Reviewed local files at the St. Johnsbury Town Clerk's office;
- Inspected the site for indications of spills of oils or hazardous chemicals, and any other adverse environmental conditions that may be present. The work addressed both interior and exterior areas with respect to sumps, floor drains, hazardous materials/waste storage areas, and other potential pathways out of the building.
- Screened stained soil areas for the possible presence of volatile organic compounds (VOCs) using a photoionization detector (PID);
- Supervised the advancement of 32 soil borings and subsequent installation of 21 water-table monitoring wells;
- Screened subsurface soils from the soil borings for the possible presence of VOCs using a PID;

- Doc. No. 08-204262.00-ISI.doc December 2005 Page 2
- Identified sensitive receptors in the area, and assessed the risk posed by the contamination to these potential receptors;
- Prepared this summary report, which details the work performed, qualitatively assesses risks, provides conclusions, and offers recommendations for further action.

#### 1.2 SITE DESCRIPTION AND PHYSICAL SETTING

The site operates primarily as a bulk oil storage facility, with a small area in the northern portion of the site used for parking by a local bus shuttle service headquartered on adjacent property north of the site. The property includes two buildings currently used as an office building and storage garage for Northern Petroleum. Neither building has a basement or crawl space. The property also houses bulk oil storage facilities, a propane cylinder and tank storage area, and associated facility parking areas. The ground surface throughout the site is graveled. Stormwater appears to flow to the southeastern corner of the site and ponds near the outside of the bulk storage tank farm. A site plan is shown in Figure 2, and an Area Map is shown in Figure 3.

The surrounding properties are commercial and light-industrial properties located along Bay Street. The site and surrounding properties are serviced by municipal water supply and wastewater services. The Passumpsic River is located approximately 700 feet east of the site. According to the Vermont Agency of Natural Resources Internet Mapping Site of Private Wells, the nearest private water supply well is located approximately ¼-mile southeast of the site, east of the Passumpsic River.

#### 1.3 SITE RECONNAISSANCE

On 12 July 2005, an ECS hydrogeologist inspected the site for indications of spills of oils or hazardous chemicals, and any other adverse environmental conditions that may be present. ECS was accompanied by Curt Utton, Northern Petroleum site manager. The following observations were made:

- The floor throughout both buildings is concrete. Minor cracks were observed in the former office building, but no floor drains or sumps were observed in either building.
- A hazardous waste storage area is located in a small room in the storage garage. Two 55-gallon drums were noted staged on a spill containment pallet. The drums were labeled as containing respective oil-contaminated solids, and oil-contaminated liquids. Both drums were nearly empty during the time of the visit. According to Mr. Utton, a certified hazardous waste hauler periodically transports the waste containers offsite for proper disposal. A spill kit is present in room. Several cans of latex paint were observed near the drums.
- During the initial site reconnaissance, no obvious areas of surficial staining were observed outside on the ground due to a recent rainfall event that concealed potential staining areas. However, during subsequent site visits associated with the drilling activities, minor areas of presumed petroleum staining was observed in the northwestern portion of the site. These areas were included in the drilling program (MW-2 ECS, MW-17, and MW-18).

#### 1.4 OIL STORAGE

The bulk oil storage facilities include gasoline, diesel, kerosene and #2 fuel oil stored in aboveground storage tanks (ASTs) with a total capacity of approximately 130,000 gallons, all of which are located

within an earthen bermed enclosure in the southeastern corner of the site. The base of the berm is composed of six inches of compacted clay. Oil from the bulk tanks is piped underground to a fueling rack located approximately 40 feet north of the tanks. Northern Petroleum currently has a certified Spill Prevention, Control, and Countermeasures (SPCC) Plan for the site; however, provisions for integrity testing of the tanks as required by 40 CFR 112.8 (c)(6) are not provided in the plan. According to the current site operator, integrity testing for the tanks has not been performed since the tanks were installed. Northern Petroleum personnel were unable to confirm whether or not buried piping leading from the ASTs to the loading rack is provided with secondary containment.

One 500-gallon underground storage tank (UST), used to store #2 heating oil for on-site use, is reportedly currently located south of the office building. A former 1,000-gallon UST used to store #2 fuel oil was reportedly located at the storage garage.

Northern Petroleum personnel were unaware of any significant spills or releases or oil at the site.

#### 1.5 NEARBY HIGH RISK PROPERTIES

#### 1.5.1 Lewis Oil Company

Lewis Oil Company bulk petroleum storage facility is located directly across Bay Street west-southwest (upgradient) of the site, and is currently listed on the active Vermont hazardous sites list (SMS Site 98-2484). According to a 1999 Initial Site Investigation report for the Lewis Oil Bulk Storage site, groundwater flow direction across the property was to the southeast, intercepting the southwest corner of the Northern Petroleum Bulk Storage Plant site (TSEC, 1999). A Twin State Environmental map illustrating VOC concentrations detected in groundwater in May 2001 indicated that a monitoring well located near the northern portion of the Lewis Oil site (existing well MW-102) had a total TPH concentration of 4,100 milligrams per liter (mg/L) (Figure 4). Three additional monitoring wells associated with the Lewis Oil site (MW-2, MW-101, and MW-1R) are located along the east side of Bay Street in the right-of-way adjacent to the Northern Petroleum site. These three monitoring wells were included in ECS's sampling plan for this SI.

#### 1.5.2 Former Canadian Pacific Railway

The former Canadian Pacific Railway - St. Johnsbury Rail Yard Site, located west and northwest (upgradient) of the site, is currently listed on the active Vermont hazardous sites list (SMS Site 98-2356). The VT DEC's active sites list indicates that polycyclic aromatic hydrocarbons (PAHs) have been detected in the soils, but no remediation is required by the State. Additional soil samples were to be collected to define the degree and extent of arsenic in the subsurface.

#### 1.5.3 Former Northern Petroleum Former Bulk Plant / Current Office Site

The Northern Petroleum Company former bulk plant / current office site, located across Bay Street directly north (crossgradient) of the site, is an active Vermont hazardous site (SMS Site 91-1169). A number of subsurface investigations and corrective action feasibility studies have reportedly been performed at this site. In a 2002 summary letter, Lincoln Applied Geology (LAG) indicated that "efforts at increasing free product containment and recovery using pump and treat technologies, free product only pumping, air sparging, and soil vapor extraction methodologies indicated minimal benefits could be achieved". Groundwater flow direction calculated in August 2001 was to the southeast. LAG indicated that the dissolved-phase

contaminant plume has occupied the same basic footprint and has not migrated since 1992, with a slow decrease in overall size due to natural attenuation processes (LAG, 2002). This site is currently undergoing passive product recovery.

#### 1.5.4 <u>Lawrence Sangravco</u>

The Lawrence Sangravco site, located immediately northeast (cross- or downgradient) of the site, is an active Vermont hazardous site (SMS Site 92-1244). The VT DEC's active site database indicated that no further action is required at the site pending results at the Northern Petroleum office site. Petroleum contamination was discovered in 1992 in soils during the removal of a #2 fuel oil UST.

#### 1.5.5 Former Ralston Purina

The former Ralston Purina property, located immediately east (downgradient) of the site, is an active Vermont hazardous site (SMS Site 95-1844). A subsurface investigation relative to a leaking gasoline UST removed in 1995 is currently underway.

#### 1.5.6 Carlet, Gilson and Hurley

The Carlet, Gilson and Hurley property, which is a closed Vermont hazardous site as of December 1999 (SMS Site 97-2187), is located to the south, across from the Ralston Purina access road in the likely downgradient direction relative to the site.

#### 1.5.7 Windshield World (Achilles Property)

Windshield World, located approximately 400 feet west-southwest (upgradient) of the site, is an active Vermont hazardous site (SMS Site 93-1549). According to a 1994 environmental report, soil and groundwater at this property were impacted by petroleum-related VOCs associated with a gasoline UST. Groundwater flow was indicated to the north (toward the subject site) following a relatively steep gradient. Other than the Passumpsic River, no other sensitive receptors were identified and quarterly sampling was recommended (LAG, 1994). The VT DEC's active sites list indicates that this site is currently undergoing groundwater monitoring.

#### 1.5.8 Upgradient Gasoline Service Stations

An Irving and a Mobil gasoline service station are located in the likely upgradient direction of the site approximately 300 and 450 feet to the northwest, respectively. Neither of these stations is listed on the Vermont hazardous sites list (active or closed).

#### 1.6 SITE AND AREA HISTORY

The site has been used for bulk petroleum storage for several decades, during which time at least three different bulk petroleum facilities have operated at the site. Since 1990, the site has been operated as a Northern Petroleum bulk storage facility. In 1990, the current generation of ASTs were reportedly moved to the site from a Northern Petroleum property located at 590 Bay Street. According to the SPCC Plan for the site, the current generation of onsite ASTs were originally constructed in 1953 (four tanks) and 1962 (two tanks).

Site Investigation Northern Petroleum Bulk Storage Site 521 Bay Street, St. Johnsbury, VT Doc. No. 08-204262.00-ISI.doc December 2005 Page 5

For an unknown period prior to 1990, the site was operated as a petroleum bulk storage facility by Menut & Parks. Another petroleum bulk storage operation reportedly preceded the Menut & Parks business. Aerial photographs dated 1962, 1974, and 1983 illustrate four apparent horizontal bulk storage ASTs located in the northeastern portion of the property, and three apparent vertical bulk storage tanks in the east-center portion of the site. Available Sanborn maps for St. Johnsbury did not include coverage of the site to confirm the history of the site in the late 1980s to early 1990s.

The Lewis Oil site has reportedly served as a bulk oil storage facility for over 50 years. Prior to 1990, fuel was offloaded by rail car at a rack located approximately 80 feet west (upgradient) of the site. In a Phase II report conducted for the former Canadian Pacific Railway, approximately 120 cubic yards of petroleum-contaminated soil were reportedly excavated and stockpiled on the Lewis Oil site in 1990 (Tewhey, 1998). According to the VT DEC spill sites list, approximately 200 gallons of #2 fuel oil were released in January 1999 due to a tank overfill. The spills database indicated that Twin State provided clean up and the spill site was subsequently closed in February 1999.

A lubricating oil business has occupied the former Northern Petroleum Bulk Storage / office site for approximately 25 years.

The former Canadian Pacific Railway property has operated as a rail yard facility since the 1850s. The central portion of the rail yard formerly included fueling operations in the 1960s, approximately 600 feet northwest of the site (Tewhey, 1998).

## 2.0 INVESTIGATIVE PROCEDURES AND RESULTS

Doc. No. 08-204262.00-ISI.doc

December 2005

Page 6

#### 2.1 SOIL BORING / MONITORING WELL INSTALLATION

On 18 and 19 July 2005, ECS supervised the completion of 22 soil borings and subsequent installation of 14 monitoring wells (MW-1, MW-2 ECS, MW-4, MW-5, MW-7, MW-8, MW-11, MW-12, MW-13, MW-16, MW-17, MW-18, MW-19 and MW-22) on or immediately adjacent to the site to further characterize contaminant and hydrogeologic conditions at the site. Based on the results of the initial drilling activities, ECS returned to the site on 12 October 2005 to supervise the completion of ten additional soil borings and subsequent installation of seven additional monitoring wells (MW-26 through MW-32) on up gradient and downgradient properties to further delineate the lateral extent of contamination.

During drilling activities, soil samples were collected continuously from each boring to characterize, screen using a PID, and/or submit for laboratory analysis. The soils generally consisted of fine sand with little silt from below grade to depths of eight to ten feet. Coarse sand and gravel were encountered in the water table below the fine silty sand layers in several borings. Strong petroleum odors were observed in the many of the borings. Bedrock was not encountered during the drilling program.

ECS installed all soil borings using direct-push drilling methodology. Soil samples were collected continuously using four-foot long polyethylene sleeves. All downhole drilling and sampling equipment was decontaminated during use, as appropriate. The monitoring wells were constructed with one-inch diameter polyvinyl chloride (PVC) casing and factory-slotted 0.010-inch slot screen. A ten-foot screen section was set within the presumed groundwater level. Sections of solid PVC riser were added to bring the tops of the well casings to approximately 0.5 feet below ground surface (bgs). Clean silica #1 filter sand was placed in the borehole annulus around each well up to approximately two feet above the slotted interval. A granular bentonite seal, approximately one foot thick, was set above the sand pack, and the remainder of the annular space was backfilled with native material. A flush-mounted steel roadbox was placed over each monitoring well and cemented into place.

All wells were developed using pre-cleaned bailers and dropline. All purge water was discharged to the ground surface in the vicinity of each well. Monitoring-well construction details are included on the soilboring and well-construction logs in Appendix A.

On 29 July and 19 October 2005, the newly installed monitoring wells were surveyed relative to existing site features, with an azimuth precision of  $\pm$  1.0 feet and an elevation precision of  $\pm$  0.01 feet.

#### 2.2 SOIL-SCREENING RESULTS

PID readings ranging from 0.0 to 585 parts per million (ppm) were obtained from soil samples collected from the soil borings. Elevated PID readings between 145 and 585 ppm were obtained on soils immediately below ground surface at three soil borings (MW-1, MW-17, and MW-18) located in the northern and central portion of the site, suggesting that this is a likely source area. PID readings ranging from 10.2 to 76.4 ppm were obtained on soils from the zero to three-foot interval at ten locations throughout the site. PID readings less than 10 ppm were obtained in soil borings SB-3, SB-6, SB-9, SB-9, SB-10, SB-14, and SB-21. Table 1 is a summary of elevated PID readings.

An ECS hydrogeologist screened soil samples from discrete intervals in each soil boring for the possible presence of VOCs using a Thermo 580B portable PID. The PID was calibrated in the field with an

isobutylene standard gas to a benzene reference. Soil samples were placed into a polyethylene bag, which was then sealed, agitated, and allowed to equilibrate. The PID probe was inserted into the headspace, and the highest reading was recorded. PID screening results are included on the boring logs in Appendix A.

#### 2.3 SOIL SAMPLING RESULTS

Soil samples were collected from two intervals (above and below the water table) in seven soil borings including MW-1, MW-2, MW-5, MW-12, MW-13, MW-17, and MW-18 and submitted for laboratory analysis of the EPA Method 8021B list of petroleum-related VOCs<sup>1</sup> and TPH diesel-range organics (DRO) by EPA Method 8015. Five of the samples were analyzed and fractional organic carbon (FOC).

The VOC analytical results were compared to the U.S. EPA Region IX Preliminary Remedial Goals (PRGs) for industrial sites. The State of Vermont has not established enforceable standards for soils; VT DEC currently evaluates soil data on a site-by-site basis commonly using the PRGs. The PRGs were exceeded for one or more VOC in MW-1 (from below the water table), MW-2 (from above the water table), and in MW-17 and MW-18 (from both above and below the water table).

The TPH concentrations ranged from 55.9 to 17,700 milligrams per kilogram (mg/Kg). TPH was identified as #2 fuel oil in four borings including MW-1 and MW-12 (above the water table), MW-5 (below the water table), and MW-13 (both above and below the water table). TPH was unidentified in the remaining samples, but calculated as #2 fuel oil, which most closely approximated the distribution of compounds in the sample<sup>2</sup>. TPH concentrations in a sample in MW-1 (below the water table) and MW-2 (above the water table) were calculated as #2 fuel oil and "other oil". Other oil includes lubricating and cutting oil and silicon oil.

The FOC values for the five samples range from 0.0054 to 0.0151. These data is expected to be used in future remedial evaluations for the site.

Table 2 presents a summary of the VOC, TPH, and FOC results; and the laboratory analytical report are presented in Appendix C. Soil contaminant distribution maps for samples collected above and below the water table are shown in Figures 5 and 6, respectively.

Two duplicate samples were collected from MW-3 and MW-5 to ensure that adequate QA/QC standards were maintained. All field procedures were conducted in accordance with ECS standard protocols. The relative percent difference (RPDs) for five VOCs in one of the duplicate samples was over the 30 percent, EPA guidance recommended limits for field duplicate QA/QC. This is likely attributed to the lack of complete homogeneity in the two samples. Following review of the data and discussion with the analytical laboratory, these exceedances are not considered to have affected the validity of the sample results. Sampling procedures were conducted in accordance with ECS standard protocols. The QA/QC results are included in Table 3.

#### 2.4 GROUNDWATER CHARACTERISTICS

Based on the hydrogeologic data, groundwater in the unconfined surficial aquifer at the site appears to flow generally southeast toward the Passumpsic River (Figure 3). Groundwater elevation data suggests

<sup>&</sup>lt;sup>1</sup> Using EPA Method 8260B

<sup>&</sup>lt;sup>2</sup> According to Spectrum Analytical, samples in which the petroleum contaminants cannot be positively identified may represent a mixture of contaminants, a contaminant outside of the calibration range, and/or represent a natural degradation of the contaminant(s) in the sample.

that a water-table anomaly is located at MW-11, as the water table appears to be elevated at this location relative to the other nearby wells. The average horizontal hydraulic gradient is approximately 0.18 percent between MW-13 and MW-17. The vertical groundwater flow components at the site, and the hydraulic relationship between the shallow unconfined aquifer and the bedrock aquifer, are currently unknown.

Fluid levels were measured in the onsite monitoring wells on 29 July 2005 to calculate the groundwater flow direction. Depths to groundwater in the on-site monitoring wells ranged from 3.75 feet (MW-11) to 5.80 feet (MW-17) below top-of-casing.

Static water-table elevations were computed for each monitoring well by subtracting the measured depth-to-water readings from the surveyed top-of-casing elevations, which are relative to an arbitrary site datum of 100.00 feet. Water-level measurements and elevation calculations are presented in Table 1. A groundwater flow direction map was prepared using these data (Figure 3). Fluid levels were measured in offsite wells on 19 October 2005 during the secondary groundwater-sampling event. This groundwater elevation data is presented on Figure 3; however the data was not incorporated in groundwater flow map as the overall water table was likely to have been higher during the October event. Field notes are presented in Appendix B.

#### 2.5 SAMPLING AND ANALYSIS

Groundwater or product samples were collected on 29 July and 19 October 2005 from the 21 newly installed monitoring wells and three existing wells and submitted for laboratory analysis. Product samples from four wells (MW-7, MW-17, MW-18, and MW-28) were analyzed for TPH by EPA method 8100 (product ID). Samples collected from the remaining 20 wells were analyzed for the EPA Method 8021B list of petroleum-related VOCs and TPH DRO by EPA Method 8015.

Vermont Groundwater Enforcement Standards<sup>4</sup> (VGESs) were exceeded for one or more petroleum hydrocarbons in samples collected from eleven monitoring wells including one offsite (downgradient) well. Total benzene, toluene, ethyl benzene, and xylenes (BTEX) concentrations in these samples ranged from 17.7 micrograms per liter ( $\mu$ g/L) in offsite well MW-8 to 19,440  $\mu$ g/L in onsite well MW-19. The total BTEX concentration in existing well MW-2 (Lewis Oil site) was 733.7  $\mu$ g/L. Based on the groundwater flow direction and history of contamination at the Lewis Oil site, it is probable that groundwater contamination has migrated from the Lewis Oil site onto the subject site at this location.

Low concentrations (below the VGESs) of three VOCs were detected in off-site well MW-30. No petroleum VOCs were detected in off-site wells MW-26, MW-27, MW-29, MW-31, MW-32, MW-101, or MW-1R.

The gasoline additive methyl tert-butyl ether (MTBE) was detected in nine wells located throughout the site in concentrations ranging from 4.9  $\mu$ g/L in MW-12 to 6,980  $\mu$ g/L in MW-1. MTBE was not detected in existing offsite well MW-2 (near the Lewis Oil bulk plant) and onsite well MW-12.

<sup>&</sup>lt;sup>4</sup> Vermont Groundwater Enforcement Standards (VGESs) for eight petroleum related VOCs are as follows: benzene - 5  $\mu$ g/L; toluene — 1,000  $\mu$ g/L; ethylbenzene - 700  $\mu$ g/L; xylenes — 10,000  $\mu$ g/L.; MTBE, a gasoline additive, - 40  $\mu$ /L; naphthalene — 20  $\mu$ g/L; 1, 2, 4-trimethylbenzene — 5  $\mu$ g/L; and 1, 3, 5-trimethylbenzene — 4  $\mu$ g/L.

Free-phase product was measured in offsite wells MW-7 and MW-28 at a thickness of 0.05 and 0.02 feet, respectively. Approximately 0.03 feet of floating product were observed on groundwater in on-site monitoring wells MW-17 and MW-19. TPH in MW-7 was identified as #2 fuel oil; TPH was unidentified in the remaining samples, but calculated as #2 fuel oil and gasoline in MW-17 and MW-19, and gasoline in MW-28. (see footnote #2 on the previous page). MW-28 is located approximately 30 feet west, upgradient, of the site property line. MW-7 is located approximately five feet east, downgradient, of the property line and downgradient of the current bulk storage ASTs. MW-19 and MW-17 are located in the northwestern portion of the site near and south of former onsite bulk storage ASTs.

Where detected, TPH concentrations in the groundwater samples ranged from 0.4 milligrams per liter (mg/L) in MW-101 to 15.3 mg/L in MW-18. TPH was identified as #2 fuel oil in MW-11, and was unidentified in the remaining samples, but calculated as #2 fuel oil in eleven of the wells. TPH concentrations in the MW-4, MW-31, MW-101, and MW-1R samples were calculated as "other oil".

Prior to groundwater sample collection, all monitoring wells that did not contain detectable thicknesses of free product were purged with a bailer and then sampled using disposable bailers and dropline, in accordance with ECS standard protocols. Purge water was discharged directly to the ground in the vicinity of each well. A trip blank and a duplicate sample were collected to ensure that adequate quality assurance/quality control (QA/QC) standards were maintained.

All samples were transported under chain-of-custody in an ice-filled cooler to Spectrum Analytical, Inc. of Agawam, Massachusetts, where they were analyzed for the possible presence of VOCs by EPA Method 8021B and for TPH by EPA Method 8015 DRO.

Analytical results of the duplicate samples, collected from MW-16 and MW-30, were within 32 and 20 percent relative percent difference (RPD) of the original sample results, respectively. All laboratory control standards including matrix spikes, method blanks, and quality control analysis were within established laboratory acceptance limits. Sampling technique was performed in accordance with ECS's Standard Operating Procedures. No petroleum-related compounds were detected in the trip blank. Groundwater analytical results are included in Table 4 and the laboratory analytical reports are presented in Appendix C. A groundwater Contaminant Distribution Map is shown in Figure 7.

#### 3.0 CONCEPTUAL SITE MODEL

The site and limited portions of adjacent property to the east and west have been impacted by two or more petroleum contaminants including #2 fuel oil, gasoline, and possibly a third unidentified oil. Contaminant distribution and historical information indicates that the contamination likely originated from multiple sources. No obvious onsite sources, such as a leaking storage tank or spills, have been documented. Two contaminant plumes have been identified and are described below. Groundwater in the unconfined surficial aquifer appears to flow generally southeast toward the Passumpsic River, with an average horizontal hydraulic gradient of approximately 0.18 percent.

#### 3.1 NORTHWESTERN PLUME

The northwestern plume is the larger of the two and is defined by three areas of free product detected in MW-17, MW-19, and MW-28. The outer limits are delineated by reduced VOC concentration in wells and/or relatively low PID readings in soil borings around the northern, eastern, and southern perimeters at MW-27, MW-26, SB-20, SB-6, SB-21, SB-3, SB-15, and MW-4, respectively. The western extent of this plume beyond MW-28 has not been defined.

Data collected to-date suggest that a release related to the former bulk storage tanks may have contributed to the contamination in this portion of the site, but an offsite source west (upgradient) of MW-28 also is considered likely. No. 2 fuel oil was identified in soils above the water table in MW-1, and estimated in MW-2 ECS, MW-17 and MW-18 in soil both above and below the water table. Other oil, (which may include lubricating, cutting, and/or silicon oil) was also estimated above the water table in MW-2 ECS. No. 2 fuel oil and gasoline were identified in groundwater in these wells. Subsurface soils in this area generally consist of a fine to medium sand upper layer with underlying coarse sand and gravels. In all soil borings, the top of the water table is within the finer sands. PID readings in soil borings indicate that the vertical extent of contamination extends into the underlying coarse sand and gravel, where present. PID readings at six soil boring locations increase with increasing depth.

#### 3.2 SOUTHEASTERN PLUME

This smaller plume is defined by one area of free product detected in MW-7. The downgradient limits are delineated by reduced VOC concentration in wells and/or relatively low PID readings in soil borings in MW-29 through MW-32, SB-9 and SB-10. This downgradient limit extends less that approximately 40 feet beyond the Northern Petroleum property line. The upgradient extent of this plume appears less discernable and may merge with the northwestern contaminant plume.

Data collected to-date suggest that a release related to the current bulk storage tank system may have contributed to the contamination in this portion of the site. No. 2 fuel oil was identified in soils both above and below the water table in MW-5 and MW-12, both of which are located upgradient of MW-7. No. 2 fuel oil was also identified in groundwater in wells in this area. The hydrogeology in this area of the site is similar to that described in the previous section. PID readings in soil borings indicate that the vertical extent of contamination extends into the underlying coarse sand and gravel layer, generally decreasing in concentration with increasing depth.

### 4.0 SENSITIVE RECEPTOR SURVEY AND RISK ASSESSMENT

Doc. No. 08-204262.00-ISI.doc

December 2005

Page 11

#### 4.1 SENSITIVE RECEPTOR SURVEY

ECS conducted a survey to identify sensitive receptors in the vicinity of the Northern Petroleum Bulk Plant that could potentially be impacted by contamination associated with the site. The following sensitive receptors were identified in the vicinity of the property.

- The soils in the northwestern and southeastern portion of the site, where elevated PID readings and visual evidence of petroleum contamination were observed in soil borings;
- Underground utility corridor along Bay Street; and
- The Passumpsic River, located approximately 700 feet east of the site.

#### 4.2 RISK ASSESSMENT

ECS qualitatively assessed the risks that the residual soil and dissolved-phase subsurface contamination poses to the receptors identified above. In general, human exposure to petroleum-related contamination is possible through inhalation, ingestion, or direct contact while impacts to environmental receptors are due either to a direct release or contaminant migration through one receptor to another or along a preferential pathway.

- Onsite surface soils Elevated VOCs were detected by PID, and heavy sheening was observed in soil samples collected from shallow depths at several soil boring locations during the drilling activities. Currently, there is no pavement or other protective surface in this area, but the area is located within the gated property boundary of the current bulk plant, limiting access to the general public. Since access to impacted soils in this area is limited, and assuming that the site is to continue to operate as a bulk storage facility, the risk to human exposure is moderate to low. If, however, the site were to undergo construction activities or change operations, then this risk would be expected to increase.
- <u>Underground utility corridor</u> According to the Town of St. Johnsbury Water Department, an underground water line runs parallel with Bay Street near the eastern side. The water department identified a possible second line of unknown orientation along the western side during the drilling activities. Based on the distribution of contaminants along Bay Street, and the depth to groundwater in this area (around five to six feet below grade) the underground lines in this area may be impacted, threatened, and/or represent a potential preferential migration pathway.
- Passumpsic River The Passumpsic River is located approximately 700 feet east of the site. Based on field screening and site observation during drilling activities, it appears that the limit of the groundwater contaminant plume along the northern portion is largely restricted to within the site boundary. Near the southern portion of the site, no VOCs were detected in downgradient monitoring wells (on the former Ralston Purina site). It is therefore unlikely that the Passumpsic River is impacted by petroleum contamination from the site.

#### 5.0 SUMMARY & CONCLUSIONS

Doc. No. 08-204262.00-ISI.doc

December 2005 Page 12

Our primary findings and conclusions of this investigation are summarized as follows:

- Soil and groundwater at the site have been impacted with petroleum-related VOCs associated with both on-site and off-site sources. Although our preliminary investigation disclosed several potential on- and off-site sources, no obvious source or sources were identified. Potential onsite sources identified include the current and former bulk oil storage ASTs, current and historical onsite loading and unloading operations, and current and former onsite heating oil USTs. Potential offsite sources identified include current and historical bulk storage ASTs (Lewis Oil and former Northern Petroleum bulk plant / office site), historical loading and unloading operations (Lewis Oil, Northern Petroleum former bulk plant / current office site, and former Canadian Pacific Railway), current and former petroleum storage USTs (Windshield World, Lawrence Sangravco, Mobil and Irving Oil), and nearby reported or unreported spills (Lewis Oil).
- The downgradient extent of the contamination appears to be adequately defined. Petroleum contamination exceeding VGESs extends less than approximately 40 feet downgradient of the site.
- Petroleum contamination appears to have migrated onto the site from one or more upgradient off-site sources. Free-phase petroleum product was detected on the western side of Bay Street, upgradient of the site (MW-28). This location is approximately 40 feet north of existing well MW-102 on the Lewis Oil bulk storage plant. The source of this free product is unknown, but likely originated from a source other than the Northern Petroleum bulk plant. The upgradient extent of groundwater contamination in this area has not been defined.
- The VGESs were exceeded for one or more petroleum hydrocarbons in eleven monitoring wells including one offsite well (MW-8, located less than ten feet east (downgradient) of the southeastern property boundary). Total BTEX concentrations in these wells ranged from 17.7 μg/L in offsite well MW-8 to 19,440 μg/L in onsite well MW-19. The gasoline additive MTBE was detected in eight onsite and one-offsite wells at concentrations ranging from 4.9 to 6,980 μg/L.
- Free-phase product was measured in offsite wells MW-7 and MW-28 at a thickness of 0.05 and 0.02 feet, respectively. Approximately 0.03 feet of floating product were observed on groundwater in on-site monitoring wells MW-17 and MW-19. TPH in MW-7 was identified as #2 fuel oil; TPH was unidentified in the remaining samples, but calculated as #2 fuel oil and gasoline in MW-17 and MW-19, and gasoline in MW-28.
- An underground water line and a possible second line of unknown nature were identified along the eastern and western sides of Bay Street. Based on the distribution of contaminants along Bay Street, and the depth to groundwater in this area, the underground utilities in this area are considered to represent potential exposure and preferential-migration pathways.
- The soils encountered during drilling generally consisted of fine sand with little silt from the ground surface to depths of eight to ten feet. Coarse sand and gravel were encountered in the water table below the fine silty sand layers in several borings. Bedrock was not encountered

during the drilling program. Depths to groundwater in the on-site monitoring wells ranged from 3.75 feet (MW-11) to 5.80 feet (MW-17) below top-of-casing.

- During the onsite and off-site soil-boring programs, PID readings ranging from 0.0 to 585 ppm were obtained from soil samples collected from the soil borings. Elevated PID readings between 145 and 585 ppm were obtained on soils immediately below ground surface at three soil borings (MW-1, MW-17, and MW-18) located in the northern and central portion of the site, suggesting that this is a likely source area. Currently, there is no ground cover in this area, but the area is located within the gated property boundary of the current bulk plant, limiting access to the general public. Since access to impacted soils in this area is limited, and assuming that the site is to continue to operate as a bulk storage facility, the risk to human exposure is moderate to low. If, however, the site were to undergo construction activities or change operations, then this risk would be expected to increase.
- The groundwater in the unconfined surficial aquifer at the site appears to flow generally southeast toward the Passumpsic River, which is located approximately 700 feet east of the site. No stormwater catchbasins potentially leading to the river were identified onsite or southeast of site. Based on the observed contaminant distribution in groundwater, it is unlikely that the Passumpsic River is impacted or threatened by petroleum contamination from the site.

## 6.0 RECOMMENDATIONS

Doc. No. 08-204262.00-ISI.doc

December 2005

Page 14

On the basis of the results of this investigation and the conclusions stated above, ECS recommends the following:

- 1. Given the industrial nature of the surrounding area, the current absence of free product in recoverable amounts, and the relatively low risk of impact to sensitive receptors, active remediation does not appear to be warranted at this time. However, if recoverable amounts of floating free product are discovered in any of the wells, if underground utilities along Bay Street are determined to be been impacted, if site use changes, or if subsequent site monitoring results indicate that VGESs are not likely to be reduced within a reasonable time frame, corrective action will likely be required.
- 2. The site owner of the Lewis Oil property should be contacted to evaluate the source and extent of groundwater contamination in the vicinity of MW-28.
- 3. An additional round of groundwater monitoring is recommended at the site in the January of 2006. Groundwater samples should be collected from all onsite and offsite monitoring wells that do not contain free product, including Lewis Oil site wells MW-2, MW-101, and MW-102, if possible. Samples should be analyzed for EPA Method 8021B-list of VOCs.
- 4. Upon completion of the work activities, a summary report should be prepared which includes boring logs, well construction details, water-quality analytical results, figures showing groundwater flow direction and contaminant distribution, relevant tables, and recommendations for further action.
- 5. The underground utilities along Bay Street should be further evaluated to determine whether these utilities are acting as a preferential-migration pathway, and to evaluate whether any subsurface structures, such as manholes and catch basins, may have been impacted. The St. Johnsbury Water Department should be notified of the potential groundwater contamination in this area. Appropriate precautionary and safety measures should be incorporated with any utility work in this area

.

### 7.0 REFERENCES

LAG, 1994. Summary of Environmental Work Completed at the Achilles Property, St. Johnsbury, Vermont, (VDEC Site #931549), Lincoln Applied Geology, Inc., 6/3/94.

Doc. No. 08-204262.00-ISI.doc

December 2005

Page 15

- LAG, 2002. Summary Letter RE: Northern Petroleum Company (NPC) Site, Bay Street, St. Johnsbury, Vermont VDEC Site #91-1169). Lincoln Applied Geology, Inc., 1/31/02.
- Tewhey, 1998. Phase II Environmental Site Investigation, Former Canadian Pacific Railway, St. Johnsbury Rail Yard Site, Tewhey Associates, March 1998.
- TSEC, 1999. Site Investigation Report, June 18, 1999, Fred W. Lewis Oil Co., Inc., SMS Site #98-2484, TSEC Project #98-112, Twin State Environmental Corp., 6/18/98.
- USGS, 1962. United States Geological Society aerial photograph, VT-62-H, 26-154, 1962.
- USGS, 1974. United States Geological Society orthophotograph, Series 5000, Sheet 188212, 1974.
- USGS, 1984. United States Geological Society 7.5-minute topographic quadrangle, St. Johnsbury, Quadrangle, 1984.
- USGS, 1983. United States Geological Society aerial photograph, http://terraserver.microsoft.com, St. Johnsbury, Vermont, 1983
- VT DEC, 2005. Vermont Department of Environmental Conservation Active Hazardous Sites List, updated November 2005.
- VT DEC, 2004. Vermont Department of Environmental Conservation Spills database. Report generated February 2004.















# TABLE 1. SUMMARY OF HIGHEST PID READINGS

521 Bay Street St. Johnsbury, VT

| SOIL BORING | <b>D</b> ATE | NEAR SURFACE     | WATER   | TABLE            | Воттом ог                |
|-------------|--------------|------------------|---------|------------------|--------------------------|
| LOCATION    | SAMPLED      | (0 TO 3 FT. BGS) | Reading | Depth ft.<br>bgs | BORING (8 TO 12 Ft. BGS) |
| MW-1        | 7/18/05      | 145              | 226     | 6                | 158.3                    |
| MW-2 ECS    | 7/18/05      | 3.8              | 202     | 6                | 225.8                    |
| SB-3        | 7/18/05      | 1.4              | 1.2     | 6                | 1.5                      |
| MW-4        | 7/18/05      | 10.2             | 23.8    | 5                |                          |
| MW-5        | 7/18/05      | 18.2             | 97.8    | 8                | 19.5                     |
| SB-6        | 7/18/05      | 1.6              | 2.6     | 7.5              | 1.7                      |
| MW-7        | 7/18/05      | 24.8             | 32.9    | 6                | 29.8                     |
| MW-8        | 7/18/05      | 2.4              | 12.8    | 4                | 20.3                     |
| SB-9        | 7/18/05      | 1.5              | 2.1     | 4.5              | 2.0                      |
| SB-10       | 7/18/05      | 2.0              | 5.7     | 5.5              | 2.0                      |
| MW-11       | 7/18/05      | 1.9              | 131.6   | 6                | 127.6                    |
| MW-12       | 7/18/05      | 76.4             | 89.7    | 5                | 83                       |
| MW-13       | 7/18/05      | 20.5             | 166.8   | 5.5              | 65                       |
| SB-14       | 7/18/05      | 2.2              | 3.2     | 6                | 4.5 @ 11 ft.             |
| SB-15       | 7/19/05      | 3.6              | 11      | 5                | 3.0                      |
| MW-16       | 7/19/05      | 33               | 53      | 5                | 7 @ 11.5 ft.             |
| MW-17       | 7/19/05      | 321 @ 2 ft.      | 338     | 5                | 184                      |
| MW-18       | 7/19/05      | 585 @ 1 ft.      |         | 5                | 207                      |
| MW-19       | 7/19/05      | 23               | 278     | 5                | 472                      |
| SB-20       | 7/19/05      | 6.7              | 6.3     | 4                | 3.0                      |
| SB-21       | 7/19/05      | 3.0              | 3.2     | 5                |                          |
| SB-22       | 7/19/05      | 13.0 @ 2 ft.     | 450     | 8                | 475 @ 11 ft.             |
| SB-23       | 10/12/05     | 65.5             | 489     | 6                | 134                      |
| SB-24       | 10/12/05     | 0.5              | 307     | 6                | 346                      |
| SB-25       | 10/12/05     | 51               | 223     | 6                | 93                       |
| MW-26       | 10/12/05     | 0.1              | 0.1     | 5                | 0.1                      |
| MW-27       | 10/12/05     | 0.0              | 0.0     | 5                | 0.0                      |
| MW-28       | 10/12/05     | 23               | 3.3     | 4.5              | 113                      |
| MW-29       | 10/12/05     | 0.0              | 0.0     | 6                | 0.5                      |
| MW-30       | 10/12/05     | 0.0              | 27.5    | 5                | 25.2                     |
| MW-31       | 10/12/05     | 0.0              | 32.8    | 6                | 23.7                     |
| MW-32       | 10/12/05     | 0.0              | 3.6     | 6                | 32.5                     |

Notes:

ppm – parts per million bgs – below ground surface

# Table 2. Groundwater Elevations

521 Bay Street St. Johnsbury, VT

Monitoring Date: 29 July 2005 & 19 October 2005

| Well I.D.         | Top of<br>Casing<br>Elevation | Casing Depth to Depth to Product V |      | Product<br>Thickness | Corrected Depth to Water | Water<br>Table<br>Elevation |
|-------------------|-------------------------------|------------------------------------|------|----------------------|--------------------------|-----------------------------|
| MW-1              | 100.00                        |                                    | 5.71 |                      |                          | 94.29                       |
| MW-1R (existing)  |                               |                                    | 5.72 |                      |                          |                             |
| MW-2 (existing)   | 100.14                        |                                    | 5.85 |                      |                          | 94.29                       |
| MW-2ECS           | 100.16                        |                                    | 5.94 |                      |                          | 94.22                       |
| MW-4              | 99.15                         |                                    | 5.25 |                      |                          | 93.90                       |
| MW-5              | 98.95                         |                                    | 5.11 |                      |                          | 93.84                       |
| MW-7              | 100.50                        | 6.45                               | 7.00 | 0.55                 | 7.44                     | 93.06                       |
| MW-8              | 100.67                        |                                    | 6.60 |                      |                          | 94.07                       |
| MW-11             | 98.75                         |                                    | 3.75 |                      |                          | 95.00                       |
| MW-12             | 98.65                         |                                    | 5.06 |                      |                          | 93.59                       |
| MW-13             | 98.98                         |                                    | 5.13 |                      |                          | 93.85                       |
| MW-16             | 99.56                         |                                    | 5.57 |                      |                          | 93.99                       |
| MW-17             | 99.83                         |                                    | 5.80 |                      |                          | 94.03                       |
| MW-18*            | 99.96                         |                                    | 5.73 |                      |                          | 94.23                       |
| MW-19*            | 100.05                        |                                    | 5.70 |                      |                          | 94.35                       |
| MW-22             | 99.95                         |                                    | 5.71 |                      |                          | 94.24                       |
| MW-26             | 102.76                        |                                    | 6.89 |                      |                          | 95.87                       |
| MW-27             | 102.90                        |                                    | 7.03 |                      |                          | 95.87                       |
| MW-28             | 102.09                        | 6.50                               | 6.77 | 0.27                 | 6.99                     | 95.10                       |
| MW-29             | 99.63                         |                                    | 4.14 |                      |                          | 95.49                       |
| MW-30             | 100.01                        |                                    | 4.37 |                      |                          | 95.64                       |
| MW-31             | 99.95                         |                                    | 4.13 |                      |                          | 95.82                       |
| MW-32             | 99.75                         |                                    | 3.89 |                      |                          | 95.86                       |
| MW-101 (existing) |                               |                                    | 6.07 |                      |                          |                             |

#### Notes:

Corrected Depth to Water: (DTP - DTW)\*0.8 + DTW, where 0.8 is estimated specific gravity of #2 fuel oil DTW = depth to water, and DTP = depth to product.

All wells except MW-26 through MW-32 were gauged on 29 July 2005. MW-26 - MW-32 were gauged on 19 October 2005.

<sup>\*</sup> Approximately 0.4 inches of product was observed in bailer during sampling in MW-17 and MW-19. All values reported in feet relative to a datum of 100.00 ft.

# Table 3. Summary of Soil Analytical Results

521 Bay Street St. Johnsbury, VT

| Sample Identification                                  | PRG     | MW-1      |                                       | MW-2 ECS                              |                           | MW                   | MW-5         |               | MW-12                |              | MW-13   |                            | MW-17                       |                         | MW-18                    |  |
|--------------------------------------------------------|---------|-----------|---------------------------------------|---------------------------------------|---------------------------|----------------------|--------------|---------------|----------------------|--------------|---------|----------------------------|-----------------------------|-------------------------|--------------------------|--|
|                                                        | PKG     | SB-1-2    | SB-1-8                                | SB-2-3                                | SB-2-11                   | SB-5-4.5             | SB-5-8       | SB-12-4       | SB-12-11             | SB-13-4      | SB-13-7 | SB-17-2.5                  | SB-17-5                     | SB-18-4                 | SB-18-6                  |  |
| Sample Depth                                           |         | 2.0       | 8.0                                   | 3.0                                   | 11.0                      | 4.5                  | 8.0          | 4.0           | 11.0                 | 4.0          | 7.0     | 2.5                        | 5.0                         | 4.0                     | 6.0                      |  |
| Date Collected                                         |         | 7/1       | 8/05                                  | 7/18                                  | 3/05                      | 7/18                 | /05          | 7/13          | 3/05                 | 7/18         | 8/05    | 7/1                        | 9/05                        | 7/19                    | 9/05                     |  |
| VOLATILE ORGANIC COMPOUNDS by EPA Method 8260B (μg/kg) |         |           |                                       |                                       |                           |                      |              |               |                      |              |         |                            |                             |                         |                          |  |
| Benzene                                                | 1,400   | BRL<1,160 | 2,100                                 | 4,720                                 | BRL<209                   | 15.8                 | BRL<202      | BRL<180       | BRL<140              | BRL<157      | BRL<139 | 2,250                      | 21,600                      | BRL<5610                | 6,080                    |  |
| Ethylbenzene                                           | 400,000 | 8,800     | 14,000                                | 6,740                                 | BRL<209                   | 7.0                  | BRL<202      | BRL<180       | 140                  | 495          | BRL<139 | 4,250                      | 127,000                     | 79,100                  | 13,600                   |  |
| Toluene                                                | 520,000 | BRL<1,160 | 1,510                                 | 2,730                                 | BRL<209                   | 8.1                  | BRL<202      | BRL<180       | BLR<140              | 281          | BRL<139 | 4,380                      | 129,000                     | 123,000                 | 24,400                   |  |
| Total Xylenes                                          | 420,000 | 54,030    | 65,260                                | 73,500                                | 524                       | 55.0                 | 1,230        | BRL<360       | 722                  | 2,581        | BRL<279 | 29,780                     | 652,000                     | 754,000                 | 91,800                   |  |
| BTEX                                                   |         | 62,830    | 82,870                                | 87,690                                | 524                       | 85.9                 | 1,230        |               | 866                  | 3,357        |         | 40,660                     | 929,600                     | 956,100                 | 135,880                  |  |
| Naphthalene                                            | 190,000 | 23,800    | 8,070                                 | 14,700                                | 259                       | 22.9                 | 1,080        | BRL<180       | 1,160                | 1,300        | BRL<139 | 11,900                     | 87,500                      | 118,000                 | 8,040                    |  |
| 1,2,4-Trimethylbenzene                                 | 170,000 | 82,800    | 39,100                                | 57,600                                | 280                       | 64.5                 | 2,010        | BRL<180       | 1,740                | 3,880        | 325     | 38,200                     | 478,000                     | 684,000                 | 47,200                   |  |
| 1,3,5-Trimethylbenzene                                 | 70,000  | 26,100    | 12,300                                | 20,900                                | BRL<209                   | 17.2                 | 790          | BRL<180       | 695                  | 1,540        | 149     | 11,800                     | 157,000                     | 217,000                 | 15,700                   |  |
| Methyl tert-butyl ether                                | 70,000  | BRL<1,160 | 12,800                                | BRL<1,370                             | 944                       | 9.1                  | BRL<202      | BRL<180       | BRL<140              | BRL<157      | 185     | BRL<1170                   | BRL<2490                    | BRL<5610                | 3,780                    |  |
| Total VOCs                                             |         | 195,530   | 155,140                               | 180,890                               | 2,007                     | 200                  | 5,110        | BRL           | 4,461                | 10,077       | 659     | 102,560                    | 1,652,100                   | 1,975,100               | 210,600                  |  |
|                                                        |         |           | EXTRA                                 | CTABLE PETI                           | ROLEUM HYI                | DROCARBONS           | S - DIESEL R | ANGE ORGAN    | NICS by EPA I        | Method 8015B | (mg/kg) |                            |                             |                         |                          |  |
| Fuel Oil #2                                            |         | 6,110     |                                       |                                       |                           |                      | 369          | 3,620         |                      | 1,400        | 180     |                            |                             |                         |                          |  |
| Unidentified<br>(calculated as)                        |         |           | 1,750<br>(#2 fuel oil &<br>other oil) | 1,920<br>(#2 fuel oil &<br>other oil) | <b>55.9</b> (#2 fuel oil) | 190<br>(#2 fuel oil) |              |               | 104<br>(#2 fuel oil) | -            |         | <b>4,630</b> (#2 fuel oil) | <b>17,700</b> (#2 fuel oil) | 14,300<br>(#2 fuel oil) | <b>725</b> (#2 fuel oil) |  |
|                                                        |         |           |                                       |                                       | FRAC                      | TIONAL ORG           | ANIC CARBO   | ON (FOC) (per | cent)                |              |         |                            |                             |                         |                          |  |
| FOC                                                    |         |           | 0.0056                                |                                       | 0.0056                    |                      |              |               | 0.0054               |              |         | 0.0122                     | 0.0082                      | 0.0151                  |                          |  |

#### Notes:

-- - not analyzed or not applicable

 $\mu g/kg - micrograms\ per\ kilogram$ 

mg/kg - milligrams per kilogram

BRL - Below reportable detection limit

Sample depth reported in approximate feet below ground surface.

PRG - EPA Preliminary Remediation Goal for Industrial Settings. Concentrations above PRGs are shaded.

Other Oil - includes lubricating and cutting oil, and silicon oil

Unidentified - unidentified petroleum product is detected and quantified using a calibration that most closely approximates the distribution of compounds in the sample.

# Table 3. Summary of Soil Analytical Results

521 Bay Street St. Johnsbury, VT

|                                 |          | QA                                    | /QC SAMPI  | LES            |             |         |              |
|---------------------------------|----------|---------------------------------------|------------|----------------|-------------|---------|--------------|
| Sample Identification           | PRG      | SB-2-3                                | SB-2-3D    | % difference   | SB-5-8      | SB-5-8D | % difference |
| Sample Depth                    |          | 3                                     | 3          |                | 8           | 8       |              |
| Date Collected                  |          | 7/13                                  | 8/05       |                | 7/1         | 8/05    |              |
|                                 | VOLATILE | ORGANIC CO                            | OMPOUNDS b | y EPA Method 8 | 260B (μg/L) |         |              |
| Benzene                         | 1,400    | 4,720                                 | 4,370      | 8              | BRL<202     | BRL<280 |              |
| Ethylbenzene                    | 400,000  | 6,740                                 | 4,740      | 35             | BRL<202     | BRL<280 |              |
| Toluene                         | 520,000  | 2,730                                 | BRL<3,730  |                | BRL<202     | BRL<280 |              |
| Total Xylene                    | 420,000  | 73,500                                | 70,000     | 5              | 1,230       | 2,250   | 59           |
| BTEX                            |          | 87,690                                | 79,110     | 10             | 1,230       | 2,250   | 59           |
| Naphthalene                     | 190,000  | 14,700                                | 14,300     | 3              | 1,080       | 1,590   | 38           |
| 1,2,4 Trimethylbenzene          | 170,000  | 57,600                                | 49,500     | 15             | 2,010       | 3,560   | 56           |
| 1,3,5 Trimethylbenzene          | 70,000   | 20,900                                | 18,300     | 13             | 790         | 1,420   | 57           |
| MTBE                            | 70,000   | BRL<1,370                             | BRL<3,730  |                | BRL<202     | BRL<280 |              |
| Total VOCs                      |          | 180,890                               | 161,210    |                | 5,110       | 8,820   |              |
|                                 | EXTRACTA | ABLE PETROI                           | LEUM HYDRO | OCARBONS - D   | RO (mg/kg)  |         |              |
| Fuel Oil #2                     |          |                                       | 3,760      |                | 369         | 864     | 80           |
| Unidentified<br>(calculated as) |          | 1,920<br>(#2 fuel oil &<br>other oil) |            | 65             |             |         |              |

#### Notes:

-- - not analyzed or not applicable

 $\mu g/kg - micrograms \ per \ kilogram$ 

mg/kg - milligrams per kilogram

BRL - Below reportable detection limit

Sample depth reported in approximate feet below ground surface.

PRG - EPA Preliminary Remediation Goal for Industrial Settings. Concentrations above PRGs are shaded.

Other Oil - includes lubricating and cutting oil, and silicon oil

Unidentified - unidentified petroleum product is detected and quantified using a calibration that most closely approximates the distribution of compounds in the sample.

# Table 4. Summary of Groundwater Analytical Results

521 Bay Street St. Johnsbury, VT

|                                                        |        |                          |                       |                    | ON-SITE                  | MONITORI  | NG WELLS                 |                      |                      |                                       |                       |                                       |                      |
|--------------------------------------------------------|--------|--------------------------|-----------------------|--------------------|--------------------------|-----------|--------------------------|----------------------|----------------------|---------------------------------------|-----------------------|---------------------------------------|----------------------|
| Sample Identification                                  | VGES   | MW-1                     | MW-2 ECS              | MW-4               | MW-5                     | MW-11     | MW-12                    | MW-13                | MW-16                | MW-17                                 | MW-18                 | MW-19                                 | MW-22                |
| Sampling Date                                          |        | 7/29/05                  | 7/29/05               | 7/29/05            | 7/29/05                  | 7/29/05   | 7/29/05                  | 7/29/05              | 7/29/05              | 7/29/05                               | 7/29/05               | 7/29/05                               | 7/29/05              |
| VOLATILE ORGANIC COMPOUBRLS by EPA Method 8260B (µg/L) |        |                          |                       |                    |                          |           |                          |                      |                      |                                       |                       |                                       |                      |
| Benzene                                                | 5      | 1,060                    | 827                   | 4.9                | 157                      | 18.2      | BRL<10.0                 | 60.2                 | 453                  |                                       | 2,770                 |                                       | 616                  |
| Ethylbenzene                                           | 700    | 1,560                    | 398                   | 2.0                | 21.6                     | 1.3       | 162                      | 29.0                 | 11.1                 |                                       | 1,310                 |                                       | 1,050                |
| Toluene                                                | 1,000  | 433                      | 93                    | 4.6                | BRL<5.0                  | BRL<1.0   | BRL<10.0                 | BRL<5.0              | 5.8                  |                                       | 6,290                 |                                       | 1,450                |
| Total Xylenes                                          | 10,000 | 6,920                    | 1,420                 | 14.1               | 145                      | 2.1       | 758.7                    | 198.1                | 39.6                 |                                       | 9,070                 |                                       | 5,016                |
| BTEX                                                   |        | 9,973                    | 2,738                 | 25.6               | 323.6                    | 21.6      | 920.7                    | 287.3                | 509.5                |                                       | 19,440                |                                       | 8,132                |
| Naphthalene                                            | 20     | 632                      | 304                   | 1.3                | 93.7                     | BRL<1.0   | 438                      | 103                  | 224                  |                                       | 824                   |                                       | 352                  |
| 1,2,4-Timethylbenzene                                  | 5      | 1,830                    | 416                   | 7.5                | 159                      | 50.6      | 760                      | 313                  | 177                  |                                       | 3,230                 |                                       | 1,310                |
| 1,3,5-Timethylbenzene                                  | 4      | 507                      | 136                   | 2.5                | 55.6                     | 3.4       | 252                      | 135                  | 64.6                 |                                       | 905                   |                                       | 363                  |
| Methyl tert-butyl ether                                | 40     | 6,980                    | 2,110                 | 38.8               | 337                      | 4.9       | BRL<10.0                 | 154                  | 43.8                 |                                       | 1,570                 |                                       | BRL<50               |
|                                                        |        |                          | EXT                   | RACTABLE P         | ETROLEUM I               | HYDROCARB | ONS by EPA M             | Tethod 8015B (1      | mg/L)                |                                       |                       |                                       |                      |
| Fuel Oil #2                                            |        |                          |                       |                    |                          | 6.7       |                          |                      |                      |                                       |                       |                                       |                      |
| Unidentified<br>(calculated as)                        |        | <b>6.8</b> (#2 fuel oil) | 13.2<br>(#2 fuel oil) | 0.5<br>(other oil) | <b>5.3</b> (#2 fuel oil) |           | <b>5.8</b> (#2 fuel oil) | 3.4<br>(#2 fuel oil) | 2.6<br>(#2 fuel oil) |                                       | 15.3<br>(#2 fuel oil) |                                       | 3.5<br>(#2 fuel oil) |
|                                                        |        |                          | EXT                   | RACTABLE F         | PETROLEUM                | HYDROCARB | ONS by EPA N             | Method 8100 (m       | g/kg)                |                                       |                       |                                       |                      |
| Fuel Oil #2                                            |        |                          |                       |                    |                          |           |                          |                      |                      |                                       |                       |                                       |                      |
| Unidentified                                           |        |                          |                       |                    |                          |           |                          |                      |                      | 70,200<br>(#2 fuel oil &<br>gasoline) |                       | 23,200<br>(#2 fuel oil &<br>gasoline) |                      |

#### Notes:

-- - not analyzed or not applicable

 $\mu g/kg - micrograms\ per\ kilogram$ 

 $\mu g/L$  - micrograms per liter

BRL - Below reportable detection limit

mg/L - milligrams per liter

Other Oil - includes lubricating and cutting oil, and silicon oil

Unidentified - unidentified petroleum product is detected and quantified using a calibration that most closely approximates the distribution of compounds in the sample.

VGES - Vermont Groundwater Enforcement Standards (exceedences are shaded)

# Table 4. Summary of Groundwater Analytical Results

521 Bay Street St. Johnsbury, VT

| OFF-SITE MONITORING WELLS                              |        |         |                      |            |            |                         |              |                          |                    |          |                         |                           |                          |
|--------------------------------------------------------|--------|---------|----------------------|------------|------------|-------------------------|--------------|--------------------------|--------------------|----------|-------------------------|---------------------------|--------------------------|
| Sample Identification                                  | VGES   | MW-7    | MW-8                 | MW-26      | MW-27      | MW-28                   | MW-29        | MW-30                    | MW-31              | MW-32    | MW-2<br>(existing well) | MW-101<br>(existing well) | MW-1R<br>(existing well) |
| Sampling Date                                          |        | 7/29/05 | 7/29/05              | 10/19/05   | 10/19/05   | 10/19/05                | 10/19/05     | 10/19/05                 | 10/19/05           | 10/19/05 | 7/29/05                 | 7/29/05                   | 7/29/05                  |
| VOLATILE ORGANIC COMPOUBRLS by EPA Method 8260B (μg/L) |        |         |                      |            |            |                         |              |                          |                    |          |                         |                           |                          |
| Benzene                                                | 5      |         | 17.7                 | BRL<1.0    | BRL<1.0    |                         | BRL<1.0      | BRL<1.0                  | BRL<1.0            | BRL<1.0  | 150                     | BRL<1.0                   | BRL<1.0                  |
| Ethylbenzene                                           | 700    |         | BRL<1.0              | BRL<1.0    | BRL<1.0    |                         | BRL<1.0      | BRL<1.0                  | BRL<1.0            | BRL<1.0  | 121                     | BRL<1.0                   | BRL<1.0                  |
| Toluene                                                | 1,000  |         | BRL<1.0              | BRL<1.0    | BRL<1.0    |                         | BRL<1.0      | BRL<1.0                  | BRL<1.0            | BRL<1.0  | 25.7                    | BRL<1.0                   | BRL<1.0                  |
| Total Xylene                                           | 10,000 |         | BRL<2.0              | BRL<2.0    | BRL<2.0    |                         | BRL<2.0      | BRL<2.0                  | BRL<2.0            | BRL<2.0  | 437                     | BRL<2.0                   | BRL<2.0                  |
| BTEX                                                   |        |         | 17.7                 | BRL        | BRL        |                         | BRL          | BRL                      | BRL                | BRL      | 733.7                   | BRL                       | BRL                      |
| Naphthalene                                            | 20     |         | BRL<1.0              | BRL<5.0    | BRL<5.0    |                         | BRL<5.0      | 2.2                      | BRL<5.0            | BRL<5.0  | 50.6                    | BRL<1.0                   | BRL<1.0                  |
| 1,2,4 Trimethylbenzene                                 | 5      |         | BRL<1.0              | BRL<1.0    | BRL<1.0    |                         | BRL<1.0      | 2.0                      | BRL<1.0            | BRL<1.0  | 126                     | BRL<1.0                   | BRL<1.0                  |
| 1,3,5 Trimethylbenzene                                 | 4      |         | BRL<1.0              | BRL<1.0    | BRL<1.0    |                         | BRL<1.0      | 1.1                      | BRL<1.0            | BRL<1.0  | 41.3                    | BRL<1.0                   | BRL<1.0                  |
| MTBE                                                   | 40     |         | 61.6                 | BRL<1.0    | BRL<1.0    |                         | BRL<1.0      | BRL<1.0                  | BRL<1.0            | BRL<1.0  | BRL<10.0                | BRL<1.0                   | BRL<1.0                  |
|                                                        |        |         | EXT                  | RACTABLE P | ETROLEUM H | IYDROCARBO              | NS by EPA Me | ethod 8015B (mg          | g/L)               |          |                         |                           |                          |
| Fuel Oil #2                                            |        |         |                      | BRL<0.2    | BRL<0.2    |                         | BRL<0.2      |                          |                    | BRL<0.2  |                         |                           |                          |
| Unidentified<br>(calculated as)                        |        |         | 5.4<br>(#2 fuel oil) |            |            |                         |              | <b>4.7</b> (#2 fuel oil) | 0.7<br>(other oil) |          | 1.7<br>(#2 fuel oil)    | 0.4<br>(other oil)        | 0.5<br>(other oil)       |
|                                                        |        | EXTR    | RACTABLE PE          | TROLEUM H  | YDROCARBO  | NS - DIESEL R           | ANGE ORGAN   | NICS by EPA M            | lethod 8100 (m     | g/kg)    |                         |                           |                          |
| Fuel Oil #2                                            |        | 201,000 |                      |            |            |                         |              |                          |                    |          |                         |                           |                          |
| Unidentified<br>(calculated as)                        |        |         |                      |            |            | 1,000,000<br>(gasoline) |              |                          |                    |          |                         |                           |                          |

#### Notes:

-- - not analyzed or not applicable

 $\mu g/kg - micrograms\ per\ kilogram$ 

 $\mu g/L$  - micrograms per liter

BRL - Below reportable detection limit

mg/L - milligrams per liter

Other Oil - includes lubricating and cutting oil, and silicon oil

Unidentified - unidentified petroleum product is detected and quantified using a calibration that most closely approximates the distribution of compounds in the sample.

VGES - Vermont Groundwater Enforcement Standards (exceedences are shaded)

### Table 4. Summary of Groundwater Analytical Results

521 Bay Street St. Johnsbury, VT

|                        |        |          |                      | QA/QC SAMP           | LES           |          |                          |                            |              |
|------------------------|--------|----------|----------------------|----------------------|---------------|----------|--------------------------|----------------------------|--------------|
| Sample Identification  | VGES   | Trip     | Duplicate            | Original Sample      | % difference  | Trip     | Duplicate                | Original Sample<br>(MW-30) | % difference |
| Sampling Date          |        | 7/29/05  | 7/29/05              | 7/29/05              |               | 10/19/05 | 10/19/05                 | 10/19/05                   |              |
|                        |        |          | VOLATILE             | ORGANIC COM          | POUBRLS (μg/I | .)       |                          |                            |              |
| Benzene                | 5      | BRL<1.0  | 572                  | 453                  | 23            | BRL<1.0  | BRL<1.0                  | BRL<1.0                    |              |
| Ethylbenzene           | 700    | BRL<1.0  | 11.8                 | 11.1                 | 6             | BRL<1.0  | BRL<1.0                  | BRL<1.0                    |              |
| Toluene                | 1,000  | BRL<1.0  | BRL<10.0             | 5.8                  | 1             | BRL<1.0  | BRL<1.0                  | BRL<1.0                    |              |
| Total Xylene           | 10,000 | BRL<2.0  | 43.3                 | 39.6                 | 9             | BRL<2.0  | BRL<2.0                  | BRL<2.0                    |              |
| BTEX                   |        |          | 627.1                | 509.5                | 21            |          | BRL                      | BRL                        |              |
| Naphthalene            | 20     | BRL<1.0  | 163                  | 224                  | 32            | BRL<1.0  | 1.8                      | 2.2                        | 20           |
| 1,2,4 Trimethylbenzene | 5      | BRL<1.0  | 175                  | 177                  | 1             | BRL<1.0  | 2.0                      | 2.0                        | 0            |
| 1,3,5 Trimethylbenzene | 4      | BRL<1.0  | 67.5                 | 64.6                 | 4             | BRL<1.0  | 1.1                      | 1.1                        | 0            |
| MTBE                   | 40     | BRL<1.0  | 44.1                 | 43.8                 | 1             | BRL<1.0  | BRL<1.0                  | BRL<1.0                    |              |
|                        |        | EXTRACTA | BLE PETROLI          | EUM HYDROCA          | RBONS (mg/kg) |          |                          |                            |              |
| Fuel Oil #2            |        |          |                      |                      |               |          |                          |                            |              |
| Unidentified           |        |          | 2.1<br>(#2 fuel oil) | 2.6<br>(#2 fuel oil) | 21            |          | <b>4.9</b> (#2 fuel oil) | <b>4.7</b> (#2 fuel oil)   | 4            |
|                        |        | EXTRACTA | BLE PETROLI          | EUM HYDROCA          | RBONS (mg/kg) |          |                          |                            |              |
| Fuel Oil #2            |        |          |                      |                      |               |          |                          |                            |              |
| Unidentified           |        |          |                      |                      |               |          |                          |                            |              |

#### Notes:

-- - not analyzed or not applicable

μg/kg - micrograms per kilogram

 $\mu g/L$  - micrograms per liter

BRL - Below reportable detection limit

mg/L - milligrams per liter

Other Oil - includes lubricating and cutting oil, and silicon oil

Unidentified - unidentified petroleum product is detected and quantified using a calibration that most closely approximates the distribution of compounds in the sample.

VGES - Vermont Groundwater Enforcement Standards (exceedences are shaded)

# APPENDIX A

SOIL BORING LOGS AND WELL CONSTRUCTION DIAGRAMS

|                                          | 1         |             | 1                                       |                         |                                                                              |                         | Bo          | ORING                                       | 3 / W       | ELL ID                                                                       | ENTIFI                        | CATION:             | <b>SB-1/MW-1</b> |
|------------------------------------------|-----------|-------------|-----------------------------------------|-------------------------|------------------------------------------------------------------------------|-------------------------|-------------|---------------------------------------------|-------------|------------------------------------------------------------------------------|-------------------------------|---------------------|------------------|
| <u> </u>                                 | E         |             |                                         |                         |                                                                              |                         |             |                                             |             | SITE NAME:                                                                   | Northern                      | Petroleum-52        | 21 Bay Street    |
| V                                        |           |             | 1                                       |                         |                                                                              |                         |             |                                             | SITI        | E LOCATION:                                                                  |                               |                     | nsbury, Vermont  |
|                                          |           |             |                                         |                         |                                                                              |                         |             | J <sub>A</sub>                              |             | ATION DATE:                                                                  | 18 July 20                    |                     | - 57             |
| 63 MILLE                                 |           |             |                                         |                         | (802) 43                                                                     |                         |             | 111                                         |             | OB NUMBER:                                                                   | 08-204262                     |                     |                  |
| RICHMON                                  |           |             |                                         | 7 (802)                 | 434-607                                                                      |                         | 400         |                                             | <i>J</i> (  |                                                                              |                               |                     | 1.15 6           |
|                                          | ELL DEP   |             | 12'                                     | nu nucl.                |                                                                              | ING DEPTH:              | 12'         | ,                                           |             |                                                                              | RESENTATIVE:                  |                     | rd, Matt Guerino |
| SCREEN                                   |           |             |                                         | RILLING):               | 6'                                                                           | Depart                  | 2.1         | 2.6.1                                       |             |                                                                              | BORING TYPE                   | ECS Agawa           |                  |
|                                          | TYPE/Si   |             | 1-inc                                   |                         | . 1. 1. 40                                                                   | DEPTH:                  | <i>Z</i> -1 | 2 ft bgs                                    |             |                                                                              | NG METHOD:                    | Geoprobe d          |                  |
|                                          | DIAMET    |             |                                         | ) slot sch              | eaule 40                                                                     | DEPTH:                  | 0.3         | ) (4 l                                      |             |                                                                              | NG METHOD:<br>TE POINT (RP)   | Disposable          | Liner            |
|                                          | TYPE/S    |             | 1-inc                                   | e <u>n</u><br>dule 40 P | WC                                                                           | DEPIH;                  | 0-2         | t bgs                                       |             |                                                                              | TE POINT (RP)<br>ATION OF RP: | Grade<br>Not measur | n d              |
| KISEK                                    | REMAR     |             | Sche                                    | aule 40 F               | VC                                                                           |                         |             |                                             |             | ELEVA                                                                        | ITION OF KI.                  | Not measur          | eu               |
|                                          | KEMAK     | IAD.        |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               | T                   |                  |
| DEPTH<br>(IN FEET)                       | SAMPLE ID | SAMPLE      | <b>ДЕРТН</b> (FT)                       | BLOWS<br>/6"            | RECOVERY (FEET)                                                              | S                       |             | PLE DESC<br>AND NO                          |             | TION                                                                         | PID<br>(PPM)                  | WELL<br>PROFILE     | LEGEND           |
| 0                                        |           | 0           | )-4                                     |                         | 3.0                                                                          |                         |             |                                             | mediu       | n sand with                                                                  | 145                           |                     | Concrete         |
| 1                                        |           |             |                                         |                         |                                                                              | some gra                | avel,       | dry                                         |             |                                                                              |                               |                     | $\boxtimes$      |
|                                          |           |             |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               | <b>∭=</b> ₩         | Native Material  |
| 3                                        |           |             |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               |                     |                  |
|                                          |           |             |                                         |                         | 2.0                                                                          | 0.00.0                  |             | 1.0                                         |             | 1 201                                                                        | 226                           |                     | D                |
| 4                                        |           | 4           | <b>1-8</b>                              |                         | 3.0                                                                          | 0-3.0' Gray<br>below bo |             |                                             | and, oc     | lor, wet 2.0 '                                                               | 226                           |                     | Bentonite        |
| 5                                        |           |             | $\blacksquare$                          |                         |                                                                              |                         | Č           |                                             |             |                                                                              |                               |                     |                  |
| 6                                        |           |             |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               |                     | Filter Sand      |
| 7                                        |           |             |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               |                     | 55.51            |
| 8                                        |           | 8-          | -12                                     |                         | 4.0                                                                          | 0-4.0' Sam              | ne as a     | above.                                      |             |                                                                              | 158.3                         |                     | Riser            |
| 9                                        |           |             |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               |                     |                  |
| 10                                       |           |             |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               |                     | Screen           |
| 11                                       |           |             |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               |                     |                  |
| 12                                       |           |             |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               |                     | Water            |
| 13                                       |           |             |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               |                     | Level            |
| 14                                       |           |             |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               |                     |                  |
| 15                                       |           |             |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               |                     |                  |
| 16                                       |           |             |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               | -                   |                  |
| 17                                       |           |             |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               |                     |                  |
| 18                                       |           |             |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               |                     |                  |
| 19                                       |           |             |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               |                     |                  |
| 20                                       |           |             |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               | -                   |                  |
|                                          |           |             |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               |                     |                  |
| 21                                       |           |             |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               |                     |                  |
| 22                                       |           |             |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               |                     |                  |
| 23                                       |           |             |                                         |                         |                                                                              |                         |             |                                             |             |                                                                              |                               |                     |                  |
| PROPOF<br>AND<br>SOME<br>LITTLE<br>TRACE | 10-20     | %<br>%<br>% | <2<br>2-4<br>4-8<br>8-15<br>15-3<br>>30 | 0                       | JNT (COHES<br>VERY SOFT<br>SOFT<br>MEDIUM STI<br>STIFF<br>VERY STIFF<br>HARD |                         |             | BLO<br>0-4<br>4-10<br>10-30<br>30-50<br>>50 | )<br>]<br>] | NT (GRANULAR :<br>/ERY LOOSE<br>LOOSE<br>MEDIUM DENSE<br>DENSE<br>/ERY DENSE | SOILS)                        | Notes:              |                  |

|                                          |                         |             |                                  |                                                  |                                                                      |               | BO        | RING / V                | VELL ID                                                                     | ENTI                    | FIC     | CATION:                   | SB-2/MW-2          |
|------------------------------------------|-------------------------|-------------|----------------------------------|--------------------------------------------------|----------------------------------------------------------------------|---------------|-----------|-------------------------|-----------------------------------------------------------------------------|-------------------------|---------|---------------------------|--------------------|
| 4                                        | 3                       |             |                                  |                                                  |                                                                      |               |           |                         | SITE NAME:                                                                  |                         |         | Petroleum-52              |                    |
|                                          |                         | 7           |                                  |                                                  |                                                                      |               |           | SIT                     | E LOCATION:                                                                 | 521 Bay                 | y St    | reet, St. John            | nsbury, Vermont    |
| 63 MILLE                                 | ET STREE                | -T SI       | LUTE 3                           | 201                                              | (802) 43                                                             | 24 4500       |           | INSTALL                 | ATION DATE:                                                                 | 18 July                 | 200     | )5                        |                    |
| RICHMON                                  |                         |             |                                  |                                                  | (802) 43<br>434-607                                                  |               |           | J                       | OB NUMBER:                                                                  | 08-2042                 | 262.    | 00                        |                    |
| W                                        | ELL DEPT                | ТН:         | 12'                              | ,                                                | BORI                                                                 | ING DEPTH:    | 12'       |                         |                                                                             | RESENTATIV              |         |                           | rd, Matt Guerino   |
|                                          |                         |             |                                  | DRILLING):                                       | 6'                                                                   |               |           |                         |                                                                             | NG COMPAN               |         | ECS Agawa                 |                    |
|                                          | DIAMETE                 |             | 1-inc                            |                                                  |                                                                      | <i>DEPTH:</i> | 2-12      | ft bgs                  |                                                                             | BORING TY               |         | Geoprobe d                | _                  |
|                                          | N TYPE/SIZ<br>R DIAMETE |             | 0.010<br>1-inc                   | 0 slot sche                                      | dule 40                                                              | DEPTH:        | 0-2 ft    | t has                   |                                                                             | NG METHO<br>CE POINT (I |         | Disposable l<br>Grade     | Liner              |
|                                          | R TYPE/SIZ              |             |                                  | edule 40 P                                       | VC                                                                   | DEFIH.        | 0-2 10    | ugs                     |                                                                             | ATION OF R              |         | Not measure               | ed                 |
|                                          | REMARK                  |             | Sene                             | uuic 10 I                                        | <u>, , , , , , , , , , , , , , , , , , , </u>                        |               |           |                         |                                                                             |                         |         | 110t measur               | cu                 |
| DEPTH<br>(IN FEET)                       | SAMPLE ID               | SAMPLE      | <b>D</b> ЕРТН (FT)               | BLOWS<br>/6"                                     | RECOVERY<br>(FEET)                                                   | \$            |           | LE DESCRIP<br>IND NOTES | TION                                                                        | PI[<br>(PPI             |         | WELL<br>PROFILE           | LEGEND             |
| 0                                        |                         | 0           | <b>)-4</b>                       |                                                  | 3.0                                                                  |               |           | wn, fine sand           |                                                                             | 3.8                     | }       |                           | Concrete           |
| 1                                        |                         |             |                                  |                                                  | + +                                                                  | gravel a      | nd little | silt-trace of co        | arse sand, dr                                                               | у.                      |         |                           | $\boxtimes$        |
| 2                                        |                         |             |                                  |                                                  | +                                                                    |               |           |                         |                                                                             |                         |         | <b></b> ₩ <b>=</b> ₩      | Native Material    |
| 3                                        |                         | -           |                                  | <del>                                     </del> | +                                                                    |               |           |                         |                                                                             |                         |         | <b>⋙≡</b> ₩               |                    |
|                                          |                         | 4           | -8                               | <del>                                     </del> | 3.0                                                                  | 0-3 0' Blac   | ck staine | ed, silt with or        | ganies wet 2                                                                | .0' 202                 | =       |                           | B <u>ento</u> nite |
| 4                                        | GD2                     | <u> </u>    |                                  |                                                  | 3.0                                                                  | below be      | oring, ar | nd sampled 1.5          |                                                                             |                         | <u></u> | <b>***</b>                |                    |
| 5                                        | SB2~<br>5'              |             | <b>T</b>                         |                                                  |                                                                      | groundw       | vater tab | ole.                    |                                                                             |                         | Ì       | ▓█▓                       |                    |
| 6                                        |                         |             |                                  |                                                  |                                                                      |               |           |                         |                                                                             |                         | ŀ       |                           | Filter Sand        |
| 7                                        |                         |             |                                  |                                                  |                                                                      |               |           |                         |                                                                             |                         | ļ       |                           | E. 2.1             |
| 8                                        |                         | 8-          | -12                              |                                                  | 3.0                                                                  | 0-3.0' Sam    | ne as abo | ove, sheen thro         | oughout.                                                                    | 225                     | .8      |                           | Riser              |
| 9                                        |                         |             |                                  |                                                  | + +                                                                  |               |           |                         |                                                                             |                         |         |                           |                    |
| 10                                       |                         |             |                                  |                                                  | + +                                                                  |               |           |                         |                                                                             |                         |         |                           | Screen             |
| 11                                       | SB2~                    |             |                                  |                                                  | <u> </u>                                                             |               |           |                         |                                                                             |                         |         |                           |                    |
| 12                                       |                         |             |                                  |                                                  |                                                                      |               |           |                         |                                                                             |                         |         | Million en en est est est | Water Level        |
| 13                                       |                         |             |                                  |                                                  |                                                                      |               |           |                         |                                                                             |                         |         |                           |                    |
| 14                                       |                         |             |                                  |                                                  |                                                                      |               |           |                         |                                                                             |                         |         |                           |                    |
| 15                                       |                         |             |                                  |                                                  |                                                                      |               |           |                         |                                                                             |                         |         |                           |                    |
| 16                                       |                         |             |                                  |                                                  |                                                                      |               |           |                         |                                                                             |                         |         |                           |                    |
| 17                                       |                         |             |                                  |                                                  |                                                                      |               |           |                         |                                                                             |                         |         |                           |                    |
| 18                                       |                         |             |                                  |                                                  |                                                                      |               |           |                         |                                                                             |                         |         |                           |                    |
| 19                                       |                         |             |                                  |                                                  |                                                                      |               |           |                         |                                                                             |                         |         |                           |                    |
| 20                                       |                         |             |                                  |                                                  |                                                                      |               |           |                         |                                                                             |                         |         |                           |                    |
| 21                                       |                         |             |                                  |                                                  |                                                                      |               |           |                         |                                                                             |                         |         |                           |                    |
| 22                                       |                         |             |                                  |                                                  |                                                                      |               |           |                         |                                                                             |                         |         |                           |                    |
| 23                                       |                         |             |                                  |                                                  |                                                                      |               |           |                         |                                                                             |                         |         |                           |                    |
| PROPOF<br>AND<br>SOME<br>LITTLI<br>TRACI | E 10-20%                | 6<br>6<br>6 | <2<br>2-4<br>4-8<br>8-15<br>15-3 | V<br>S<br>M<br>5 S<br>30 V                       | JNT (COHES<br>/ERY SOFT<br>SOFT<br>MEDIUM STI<br>STIFF<br>/ERY STIFF | IFF           |           | 4<br>10<br>-30<br>-50   | JNT (GRANULAR<br>VERY LOOSE<br>LOOSE<br>MEDIUM DENSE<br>DENSE<br>VERY DENSE | SOILS)                  |         | Notes:                    |                    |

| ,                                        | 1                |              |                                         |               |                                                                              |                            | BO      | ORIN                                       | G/V     | VELL ID                                                                     | ENTIFIC        | CATION:         | SB-3             |
|------------------------------------------|------------------|--------------|-----------------------------------------|---------------|------------------------------------------------------------------------------|----------------------------|---------|--------------------------------------------|---------|-----------------------------------------------------------------------------|----------------|-----------------|------------------|
|                                          | E,               | 3            |                                         |               |                                                                              |                            |         |                                            |         | SITE NAME:                                                                  | Northern P     | etroleum-52     | 1 Bay Street     |
| /                                        |                  |              | 1                                       |               |                                                                              |                            |         |                                            | SIT     | E LOCATION:                                                                 | 521 Bay St     | reet, St. John  | sbury, Vermont   |
|                                          |                  |              |                                         |               |                                                                              |                            |         | I                                          | NSTALL  | ATION DATE:                                                                 | 18 July 200    | )5              |                  |
| 63 MILLE<br>RICHMON                      |                  |              |                                         |               | (802) 43<br>434-607                                                          | 34-4500<br>6 - fay         |         |                                            | J       | OB NUMBER:                                                                  | 08-204262.     |                 |                  |
|                                          | ELL DEF          |              | 00+1                                    | 7 (002)       |                                                                              | ING DEPTH:                 | 12'     |                                            |         | ECS REA                                                                     | PRESENTATIVE:  | Kim Locka       | rd, Matt Guerino |
| DEPTH                                    | TO WATI          | ER (DU       | RING L                                  | ORILLING):    | 6'                                                                           |                            | 1       |                                            |         | DRILL                                                                       | ING COMPANY:   | ECS Agaw        |                  |
| SCREEN                                   |                  |              |                                         |               |                                                                              | <i>D</i> ЕРТН:             |         |                                            |         |                                                                             | BORING TYPE    | Geoprobe o      | direct-push      |
|                                          | TYPE/S.          |              |                                         | -             |                                                                              |                            |         |                                            |         |                                                                             | LING METHOD:   | Disposable      | Liner            |
|                                          | DIAMET<br>TYPE/S |              |                                         |               |                                                                              | <i>D</i> ЕРТН:             |         |                                            |         |                                                                             | ICE POINT (RP) | :               |                  |
| KISER                                    | REMAR            |              |                                         |               |                                                                              |                            |         |                                            |         | ELE                                                                         | VATION OF RP:  |                 |                  |
| DEPTH<br>(IN FEET)                       | SAMPLE ID        |              | <b>ДЕРТН</b> (FT)                       | BLOWS<br>/6"  | RECOVERY (FEET)                                                              | Ş                          | _       | PLE DES                                    |         | TION                                                                        | PID<br>(PPM)   | WELL<br>PROFILE | LEGEND           |
| 0                                        |                  | 0-           | -4                                      |               | 3.0                                                                          |                            |         |                                            | e sand  | with some sil                                                               | t, 1.4         |                 | Concrete         |
| 1                                        |                  |              |                                         |               |                                                                              | dry, stair                 | ned 2.  | 5 bgs.                                     |         |                                                                             |                |                 | $\boxtimes$      |
| 2                                        |                  |              |                                         |               |                                                                              |                            |         |                                            |         |                                                                             |                |                 | Native Material  |
| 3                                        |                  |              |                                         |               |                                                                              |                            |         |                                            |         |                                                                             |                |                 |                  |
| 4                                        |                  | 4-           | -8                                      |               | 3.0                                                                          | 0-3.0' Yell                |         |                                            |         |                                                                             | 1.2            |                 | Bentonite        |
| 5                                        |                  |              | <b>T</b>                                |               |                                                                              |                            |         |                                            |         | boring, staining of                                                         |                | No Well         |                  |
|                                          |                  |              |                                         |               |                                                                              | water tal                  | _       |                                            | ,       | swiiiig                                                                     |                |                 | Filter Şand      |
| 6                                        |                  |              |                                         |               |                                                                              |                            |         |                                            |         |                                                                             |                |                 |                  |
| 7                                        |                  | 8-           | 12                                      |               | 3.5                                                                          | 0-2.5' sam                 | ne as a | hove                                       |         |                                                                             | 1.5            |                 | Riser            |
| 8                                        |                  |              |                                         |               | 3.3                                                                          | 2.5-3.0' Gr<br>3.0-3.5' Gr | ray, fi | ne sand.                                   | d and a | roval                                                                       |                |                 |                  |
| 10                                       |                  |              |                                         |               |                                                                              | 3.0-3.3 G                  | ray, co | Jaise sair                                 | u anu g | raver.                                                                      |                |                 | Screen           |
| 11                                       |                  |              |                                         |               |                                                                              |                            |         |                                            |         |                                                                             |                |                 |                  |
| 12                                       |                  |              |                                         |               |                                                                              |                            |         |                                            |         |                                                                             |                | <u> </u><br>    | <b>▼</b> Water   |
| 13                                       |                  |              |                                         |               |                                                                              |                            |         |                                            |         |                                                                             |                |                 | Level            |
| 14                                       |                  |              |                                         |               | 1                                                                            |                            |         |                                            |         |                                                                             |                |                 |                  |
| 15                                       |                  |              |                                         |               | +                                                                            |                            |         |                                            |         |                                                                             |                |                 |                  |
| 16                                       |                  |              |                                         |               |                                                                              |                            |         |                                            |         |                                                                             |                | †               |                  |
| 17                                       |                  |              |                                         |               |                                                                              |                            |         |                                            |         |                                                                             |                |                 |                  |
| 18                                       |                  |              |                                         |               |                                                                              | •                          |         |                                            |         |                                                                             |                |                 |                  |
| 19                                       |                  |              |                                         |               | 1                                                                            |                            |         |                                            |         |                                                                             |                |                 |                  |
| 20                                       |                  |              |                                         |               |                                                                              |                            |         |                                            |         |                                                                             |                |                 |                  |
| 21                                       |                  |              |                                         |               |                                                                              |                            |         |                                            |         |                                                                             |                |                 |                  |
| 22                                       |                  |              |                                         |               |                                                                              |                            |         |                                            |         |                                                                             |                |                 |                  |
| 23                                       |                  |              |                                         |               |                                                                              |                            |         |                                            |         |                                                                             |                |                 |                  |
| PROPOR<br>AND<br>SOME<br>LITTLE<br>TRACE | 10-20            | %<br>%<br>!% | <2<br>2-4<br>4-8<br>8-15<br>15-3<br>>30 | \<br>S<br>0 \ | JNT (COHE:<br>/ERY SOFT<br>SOFT<br>MEDIUM STI<br>STIFF<br>/ERY STIFF<br>HARD | FF                         |         | BI<br>0-4<br>4-10<br>10-30<br>30-50<br>>50 |         | UNT (GRANULAR<br>VERY LOOSE<br>LOOSE<br>MEDIUM DENSE<br>DENSE<br>VERY DENSE | SOILS)         | Notes:          |                  |

|                                          |                         |                      |                              |                                                                      |                | BORIN                                | IG / W      | VELL ID                                                                     | ENTIFIC                      | CATION:                  | SB-4/MW-4          |
|------------------------------------------|-------------------------|----------------------|------------------------------|----------------------------------------------------------------------|----------------|--------------------------------------|-------------|-----------------------------------------------------------------------------|------------------------------|--------------------------|--------------------|
| 4                                        | 398                     |                      |                              |                                                                      |                |                                      |             | SITE NAME:                                                                  |                              | Petroleum-52             |                    |
|                                          |                         |                      |                              |                                                                      |                |                                      | SITI        | E LOCATION:                                                                 | 521 Bay St                   | treet, St. John          | nsbury, Vermont    |
| 63 MILLE                                 | CT STDEE                | т Силт               | 201                          | (802) 43                                                             | 24.4500        |                                      | INSTALL     | ATION DATE:                                                                 | 18 July 20                   | 05                       |                    |
| RICHMON                                  |                         |                      |                              | 434-607                                                              |                |                                      | Jo          | OB NUMBER:                                                                  | 08-204262                    | .00                      |                    |
| $W_{i}$                                  | ELL DEPT                | TH: 12°              | ) (                          |                                                                      | ING DEPTH:     | 12'                                  |             |                                                                             | RESENTATIVE:                 | Kim Lockar               | rd, Matt Guerino   |
|                                          |                         |                      | G DRILLING):                 | 5'                                                                   |                |                                      |             |                                                                             | IG COMPANY:                  | ECS Agawa                |                    |
|                                          | DIAMETE                 |                      | nch                          |                                                                      | <b>ДЕРТН:</b>  | 2-12 ft bgs                          | S           |                                                                             | BORING TYPE                  | Geoprobe d               |                    |
|                                          | N TYPE/SIZ<br>R DIAMETE | • 0.0                | 10 slot sche                 | dule 40                                                              |                | 0.261                                |             |                                                                             | NG METHOD:<br>CE POINT (RP). | Disposable 1             | Liner              |
|                                          | R DIAMETE<br>R TYPE/SIZ |                      | nch<br>hedule 40 P           | VC                                                                   | <i>D</i> ЕРТН: | 0-2 ft bgs                           |             |                                                                             | ATION OF RP:                 | Grade<br>Not measur      | -ed                |
| TUSER                                    | REMARK                  | 70 0                 | icauic 40 I                  | <u> </u>                                                             |                |                                      |             | EEE/1                                                                       | THOW OF THE.                 | 110t IIIcasui            | cu                 |
| DEPTH<br>(IN FEET)                       | SAMPLE ID               | SAMPLE<br>DEPTH (FT) | BLOWS                        | RECOVERY (FEET)                                                      | \$             | SAMPLE DE<br>AND N                   |             | TION                                                                        | PID<br>(PPM)                 | WELL<br>PROFILE          | LEGEND             |
| 0                                        |                         | 0-4                  |                              | 2.0                                                                  |                | ellow-brown, f                       |             |                                                                             |                              |                          | Concrete           |
| 1                                        |                         | <u> </u>             | 1                            | + +                                                                  |                | Black staining,<br>d silt, dry.      | ,, weather  | red soils, fine                                                             | ;                            |                          | $\boxtimes$        |
| 2                                        |                         |                      | +                            | +                                                                    |                | , , .                                |             |                                                                             |                              |                          | Native Material    |
| 3                                        |                         |                      | +                            | +                                                                    |                |                                      |             |                                                                             |                              | ▓█▓                      |                    |
|                                          |                         | 4-8                  |                              | 2.0                                                                  | 0-2" of dry    | v cement                             |             |                                                                             | 23.8                         | ▓█▓                      | B <u>ento</u> nite |
| 4                                        |                         | <b>T</b>             |                              | 2.0                                                                  | 2'-2'Gray,     | , fine sand and                      | d very litt | tle silt, odor,                                                             | 23.0                         |                          |                    |
| 5                                        |                         | <u> </u>             |                              |                                                                      | wet 5' b       | gs.                                  |             |                                                                             |                              |                          |                    |
| 6                                        |                         |                      |                              |                                                                      |                |                                      |             |                                                                             |                              |                          | Filter Sand        |
| 7                                        |                         |                      |                              |                                                                      | ľ              |                                      |             |                                                                             |                              |                          |                    |
| 8                                        |                         | 8-12                 |                              | 2.0                                                                  | 0-2.0' Sam     | ne as above.                         |             |                                                                             |                              |                          | Riser              |
| 9                                        |                         |                      |                              |                                                                      |                |                                      |             |                                                                             |                              |                          |                    |
| 10                                       |                         |                      | _                            | +                                                                    |                |                                      |             |                                                                             |                              |                          | Screen             |
| 11                                       |                         |                      | +                            |                                                                      |                |                                      |             |                                                                             |                              |                          |                    |
| 12                                       |                         |                      | _                            | +                                                                    |                |                                      |             |                                                                             |                              | *** <del>****</del> **** | Water              |
| 13                                       |                         |                      | -                            |                                                                      |                |                                      |             |                                                                             |                              |                          | Level              |
| 14                                       |                         |                      |                              |                                                                      |                |                                      |             |                                                                             |                              |                          |                    |
| 15                                       |                         |                      |                              |                                                                      |                |                                      |             |                                                                             |                              |                          |                    |
| 16                                       |                         |                      | +                            |                                                                      |                |                                      |             |                                                                             |                              |                          |                    |
| 17                                       |                         |                      |                              |                                                                      | ļ              |                                      |             |                                                                             |                              |                          |                    |
| 18                                       |                         |                      |                              |                                                                      | ,              |                                      |             |                                                                             |                              |                          |                    |
| 19                                       |                         |                      |                              |                                                                      |                |                                      |             |                                                                             |                              |                          |                    |
| 20                                       |                         |                      |                              |                                                                      |                |                                      |             |                                                                             |                              |                          |                    |
| 21                                       |                         |                      |                              |                                                                      |                |                                      |             |                                                                             |                              |                          |                    |
| 22                                       |                         |                      |                              |                                                                      | ľ              |                                      |             |                                                                             |                              |                          |                    |
| 23                                       |                         |                      |                              |                                                                      | }              |                                      |             |                                                                             |                              |                          |                    |
| PROPOF<br>AND<br>SOME<br>LITTLE<br>TRACE | E 10-20%                | 5                    | 2 \\ -4 S -8 M -15 S 5-30 \\ | UNT (COHES<br>VERY SOFT<br>SOFT<br>MEDIUM STI<br>STIFF<br>VERY STIFF | IFF            | 0-4<br>4-10<br>10-30<br>30-50<br>>50 | \<br>1<br>1 | INT (GRANULAR<br>VERY LOOSE<br>LOOSE<br>MEDIUM DENSE<br>DENSE<br>VERY DENSE | SOILS)                       | Notes:                   |                    |

|                                          |                         |        |                                   |                         |                                                                      |             | BOR                                  | ING / W              | VELL ID                                                                     | ENTIFI                      | CATION:          | SB-5/MW-5          |
|------------------------------------------|-------------------------|--------|-----------------------------------|-------------------------|----------------------------------------------------------------------|-------------|--------------------------------------|----------------------|-----------------------------------------------------------------------------|-----------------------------|------------------|--------------------|
| 4                                        | 3,00                    |        | 7                                 |                         |                                                                      |             |                                      |                      | SITE NAME:                                                                  |                             | Petroleum-52     |                    |
|                                          |                         |        |                                   |                         |                                                                      |             |                                      | SITI                 | E LOCATION:                                                                 | 521 Bay S                   | treet, St. John  | nsbury, Vermont    |
| 63 MILLE                                 | ET STDE                 | -T Q1  | UTE 3                             | 01                      | (802) 43                                                             | 24 4500     |                                      | INSTALL              | ATION DATE:                                                                 | 18 July 20                  | 005              |                    |
| RICHMON                                  |                         |        |                                   |                         | 434-607                                                              |             |                                      | Jo                   | OB NUMBER:                                                                  | 08-204262                   | 2.00             |                    |
| W                                        | ELL DEPT                | TH: ]  | 12'                               |                         | BORE                                                                 | ING DEPTH:  | 12'                                  |                      |                                                                             | RESENTATIVE:                |                  | rd, Matt Guerino   |
|                                          |                         |        |                                   | PRILLING):              | 8'                                                                   |             | T                                    |                      |                                                                             | NG COMPANY:                 | ECS Agawa        |                    |
|                                          | DIAMETE                 |        | 1-inc                             |                         | 1 1 40                                                               | DEPTH:      | 2-12 ft                              | bgs                  |                                                                             | BORING TYPE                 |                  | •                  |
|                                          | N TYPE/SIZ<br>R DIAMETE |        | 0.010<br>1-inc                    | ) slot sche             | dule 40                                                              | DEPTH:      | 0-2 ft k                             | h cc                 |                                                                             | NG METHOD:<br>CE POINT (RP) | Disposable Grade | Liner              |
|                                          | R TYPE/SIZ              |        |                                   | dule 40 P               | VC                                                                   | DEFIH.      | 0-2111                               | Jgs –                |                                                                             | ATION OF RP:                |                  | ·ed                |
| 111,021                                  | REMARK                  |        | Jene                              | uuic 40 I               | <del>, , , , , , , , , , , , , , , , , , , </del>                    |             |                                      |                      |                                                                             |                             | 110t incasur     | - Cu               |
| DEPTH<br>(IN FEET)                       | SAMPLE ID               | SAMPLE | <b>D</b> ЕРТН (FT)                | BLOWS<br>/6"            | RECOVERY (FEET)                                                      | S           | _                                    | : DESCRIP<br>D NOTES | TION                                                                        | PID<br>(PPM)                | WELL<br>PROFILE  | LEGEND             |
| 0                                        |                         | 0-     | 4                                 |                         | 3.0                                                                  |             |                                      | t, fine sand w       |                                                                             | 18.2                        |                  | Concrete           |
| 1                                        |                         |        |                                   |                         |                                                                      | black sta   | ilning nas                           | s slight odor,       | ary.                                                                        |                             |                  |                    |
| 2                                        |                         |        |                                   |                         | +                                                                    |             |                                      |                      |                                                                             |                             |                  | Native Material    |
| 3                                        |                         |        |                                   |                         | + +                                                                  |             |                                      |                      |                                                                             |                             |                  |                    |
| 4                                        |                         | 4-     | -8                                |                         | 3.0                                                                  | 0-3.0' Gra  | v to black                           | . fine sand w        | ith silt, odor,                                                             | 97.8                        | ₩₩₩              | B <u>ento</u> nite |
| 5                                        |                         |        |                                   |                         |                                                                      |             |                                      | er level 8' bg       |                                                                             |                             |                  |                    |
| 6                                        |                         |        |                                   |                         | -                                                                    |             |                                      |                      |                                                                             |                             |                  | Filter Sand        |
| 7                                        |                         |        | <b>T</b>                          |                         | -                                                                    |             |                                      |                      |                                                                             |                             |                  |                    |
| 8                                        | SB5~                    | 8-1    |                                   |                         | 2                                                                    | 0-1.5' Dar  | k brown,                             | fine sand wit        | h some                                                                      | 25                          |                  | Riser              |
| 9                                        | 8'                      |        |                                   |                         | +                                                                    | cobbles, so | ome organ                            |                      |                                                                             |                             |                  |                    |
| 10                                       |                         |        |                                   |                         | + +                                                                  | 1.5 2.0     | nay, cour                            | )C 34114 4114 2      | ,14 v C1.                                                                   |                             |                  | Screen             |
| 11                                       |                         |        |                                   |                         | +                                                                    |             |                                      |                      |                                                                             |                             |                  |                    |
| 12                                       |                         |        |                                   |                         | +                                                                    |             |                                      |                      |                                                                             |                             |                  | ▼ Water            |
| 13                                       |                         |        |                                   |                         | +                                                                    |             |                                      |                      |                                                                             |                             |                  | Level              |
| 14                                       |                         |        |                                   |                         | +                                                                    |             |                                      |                      |                                                                             |                             |                  |                    |
| 15                                       |                         |        |                                   |                         |                                                                      |             |                                      |                      |                                                                             |                             |                  |                    |
| 16                                       |                         |        |                                   |                         |                                                                      |             |                                      |                      |                                                                             |                             | -                |                    |
| 17                                       |                         |        |                                   |                         | 1                                                                    |             |                                      |                      |                                                                             |                             |                  |                    |
| 18                                       |                         |        |                                   |                         | 1                                                                    |             |                                      |                      |                                                                             |                             |                  |                    |
| 19                                       |                         |        |                                   |                         |                                                                      |             |                                      |                      |                                                                             |                             |                  |                    |
| 20                                       |                         |        |                                   |                         |                                                                      |             |                                      |                      |                                                                             |                             | 1                |                    |
| 21                                       |                         |        |                                   |                         |                                                                      |             |                                      |                      |                                                                             |                             |                  |                    |
| 22                                       |                         |        |                                   |                         |                                                                      |             |                                      |                      |                                                                             |                             |                  |                    |
| 23                                       |                         |        |                                   |                         |                                                                      |             |                                      |                      |                                                                             |                             |                  |                    |
| PROPOR<br>AND<br>SOME<br>LITTLE<br>TRACE | E 10-20%                | 6<br>6 | <2<br>2-4<br>4-8<br>8-15<br>15-30 | V<br>S<br>N<br>S<br>O V | JNT (COHES<br>/ERY SOFT<br>SOFT<br>MEDIUM STI<br>STIFF<br>/ERY STIFF | IFF         | 0-4<br>4-10<br>10-30<br>30-50<br>>50 | )<br>0 !<br>0 !      | INT (GRANULAR<br>VERY LOOSE<br>LOOSE<br>MEDIUM DENSE<br>DENSE<br>VERY DENSE | SOILS)                      | Notes:           |                    |

|                                          | 1               |              |                                         |                  |                                                                            |                | BORING / W                            | VELL ID                                                                     | ENTIFIC         | ATION:          | <b>SB-6</b>       |
|------------------------------------------|-----------------|--------------|-----------------------------------------|------------------|----------------------------------------------------------------------------|----------------|---------------------------------------|-----------------------------------------------------------------------------|-----------------|-----------------|-------------------|
|                                          | E.              |              |                                         |                  |                                                                            |                |                                       | SITE NAME:                                                                  | Northern P      | etroleum-52     | 1 Bay Street      |
| /                                        |                 |              |                                         |                  |                                                                            |                | SITI                                  | E LOCATION:                                                                 | 521 Bay Str     | eet, St. John   | sbury, Vermont    |
|                                          |                 |              |                                         |                  | 1000                                                                       |                | INSTALL                               | ATION DATE:                                                                 | 18 July 200     | 5               |                   |
| 63 MILLE<br>RICHMON                      |                 |              |                                         |                  | (802) 43<br>434-607                                                        |                | J                                     | OB NUMBER:                                                                  | 08-204262.0     |                 |                   |
|                                          | ELL DEF         |              | 1 0041                                  | 7 (002)          |                                                                            | ING DEPTH:     | 12'                                   | ECS RE                                                                      | PRESENTATIVE:   |                 | rd, Matt Guerino  |
| DEPTH                                    | TO WATI         | ER (DU       | JRING D                                 | RILLING):        | 7.5'                                                                       |                |                                       | DRILL                                                                       | ING COMPANY:    | ECS Agaw        |                   |
| SCREEN                                   | DIAMET          | TER:         |                                         |                  |                                                                            | <i>D</i> ЕРТН: |                                       |                                                                             | BORING TYPE     | Geoprobe o      |                   |
| SCREEN                                   |                 |              |                                         |                  |                                                                            |                |                                       |                                                                             | LING METHOD:    | Disposable      | Liner             |
|                                          | DIAMET          |              |                                         |                  |                                                                            | <i>D</i> ЕРТН: |                                       |                                                                             | ICE POINT (RP): |                 |                   |
| RISER                                    | TYPE/S<br>REMAR |              |                                         |                  |                                                                            |                |                                       | ELE                                                                         | VATION OF RP:   |                 |                   |
|                                          | KEMAI           | ins.         |                                         |                  | 1                                                                          |                |                                       |                                                                             |                 |                 |                   |
| DEPTH<br>(IN FEET)                       | SAMPLE ID       | SAMPLE       | <b>DEPTH (FT)</b>                       | BLOWS<br>/6"     | RECOVERY (FEET)                                                            | S              | SAMPLE DESCRIP<br>AND NOTES           | TION                                                                        | PID<br>(PPM)    | WELL<br>PROFILE | LEGEND            |
| 0                                        |                 | 0            | )-4                                     |                  | 2.5                                                                        |                | wn, fine sand with 2"                 | layer of coars                                                              | se 1.6          |                 | Concrete          |
| 1                                        |                 |              |                                         |                  |                                                                            |                | y, no odor.<br>own to dark brown, fir | o and dra                                                                   |                 |                 | $\boxtimes$       |
|                                          |                 |              |                                         |                  |                                                                            | 2.0-2.3 BIG    | own to dark brown, in                 | ie saiiu, ury.                                                              |                 |                 | Native Material   |
| 2                                        |                 |              |                                         |                  |                                                                            |                |                                       |                                                                             |                 |                 | Tuttive Whiterian |
| 3                                        |                 |              |                                         |                  | 2.0                                                                        | 0.1.52.1:1     | .1 :4.1                               | C 11 C                                                                      | 2.6             |                 |                   |
| 4                                        |                 | 4            | -8                                      |                  | 3.0                                                                        | sand, mo       | nt brown with layers o                | i yeiiow, iine                                                              | 2.6             |                 | Bentonite         |
| 5                                        |                 |              |                                         |                  |                                                                            |                | rown, fine sand, wet 3                | .5' below                                                                   |                 | No Well         |                   |
| 6                                        |                 |              |                                         |                  |                                                                            | boring.        |                                       |                                                                             |                 |                 | Filter Sand       |
| 7                                        |                 |              | _                                       |                  |                                                                            |                |                                       |                                                                             |                 |                 | 63.23             |
| 8                                        |                 | 8-           | -12                                     |                  | 3.0                                                                        | 0-3.0' Bro     | own, fine sand, wet.                  |                                                                             | 1.7             |                 | Riser             |
| 9                                        |                 |              |                                         |                  |                                                                            |                |                                       |                                                                             |                 |                 |                   |
| 10                                       |                 |              |                                         |                  |                                                                            |                |                                       |                                                                             |                 |                 | Screen            |
| 11                                       |                 |              |                                         |                  |                                                                            |                |                                       |                                                                             |                 |                 |                   |
| 12                                       |                 |              |                                         |                  |                                                                            |                |                                       |                                                                             |                 |                 | Water<br>Level    |
| 13                                       |                 |              |                                         |                  |                                                                            |                |                                       |                                                                             |                 |                 | Level             |
| 14                                       |                 |              |                                         |                  |                                                                            |                |                                       |                                                                             |                 |                 |                   |
| 15                                       |                 |              |                                         |                  |                                                                            |                |                                       |                                                                             |                 |                 |                   |
| 16                                       |                 |              |                                         |                  |                                                                            |                |                                       |                                                                             |                 |                 |                   |
| 17                                       |                 |              |                                         |                  |                                                                            | •              |                                       |                                                                             |                 |                 |                   |
| 18                                       |                 |              |                                         |                  |                                                                            | •              |                                       |                                                                             |                 |                 |                   |
| 19                                       |                 |              |                                         |                  |                                                                            | •              |                                       |                                                                             |                 |                 |                   |
| 20                                       |                 |              |                                         |                  |                                                                            |                |                                       |                                                                             |                 | •               |                   |
| 21                                       |                 |              |                                         |                  |                                                                            |                |                                       |                                                                             |                 |                 |                   |
| 22                                       |                 |              |                                         |                  |                                                                            |                |                                       |                                                                             |                 |                 |                   |
| 23                                       |                 |              |                                         |                  |                                                                            |                |                                       |                                                                             |                 |                 |                   |
| PROPOR<br>AND<br>SOME<br>LITTLE<br>TRACE | E 10-20         | %<br>%<br>!% | <2<br>2-4<br>4-8<br>8-15<br>15-3<br>>30 | \<br>S<br>M<br>S | JNT (COHE<br>/ERY SOFT<br>SOFT<br>MEDIUM ST<br>STIFF<br>/ERY STIFF<br>HARD |                | 0-4<br>4-10<br>10-30<br>30-50         | JNT (GRANULAR<br>VERY LOOSE<br>LOOSE<br>MEDIUM DENSE<br>DENSE<br>VERY DENSE | SOILS)          | Notes:          |                   |

|                                          |                         |              |                                                    |                                                                            |                     | BORIN                                | 1G / W          | VELL ID                                                                     | ENTIFIC                        | CATION:              | SB-7/MW-7          |
|------------------------------------------|-------------------------|--------------|----------------------------------------------------|----------------------------------------------------------------------------|---------------------|--------------------------------------|-----------------|-----------------------------------------------------------------------------|--------------------------------|----------------------|--------------------|
| 4                                        |                         |              |                                                    | 1                                                                          |                     |                                      |                 | SITE NAME:                                                                  |                                | Petroleum-52         |                    |
|                                          |                         |              |                                                    |                                                                            |                     |                                      | SITI            | E LOCATION:                                                                 | 521 Bay St                     | reet, St. John       | nsbury, Vermont    |
| 00.14                                    |                         | 0            | -004                                               | (000)                                                                      | 04.4500             |                                      | INSTALL         | ATION DATE:                                                                 | 18 July 200                    | 05                   |                    |
| 63 MILLE                                 | ET STREE<br>ND, VERN    |              |                                                    | 4 (802)<br>[20-434 (2                                                      | 34-4500<br>76 - FAX |                                      | Jo              | OB NUMBER:                                                                  | 08-204262.                     | .00                  |                    |
|                                          | ELL DEPT                |              |                                                    |                                                                            | RING DEPTH:         | 12'                                  |                 | ECS REP                                                                     | RESENTATIVE:                   | Kim Lockar           | rd, Matt Guerino   |
| DEPTH                                    | TO WATEI                | R (DURIN     | NG DRILLING)                                       | : 6'                                                                       |                     |                                      |                 | DRILLIN                                                                     | NG COMPANY:                    | ECS Agawa            |                    |
|                                          | DIAMETE                 |              | -inch                                              |                                                                            | <i>D</i> ЕРТН:      | 2-12 ft bg                           | zs              |                                                                             | BORING TYPE                    | Geoprobe d           | _                  |
|                                          | TYPE/SIZ                |              | .010 slot so                                       | hedule 4                                                                   |                     | T                                    |                 |                                                                             | ING METHOD:                    | Disposable           | Liner              |
|                                          | R DIAMETE<br>R TYPE/SIZ |              | -inch<br>chedule 40                                | DVC                                                                        | <i>D</i> ЕРТН:      | 0-2 ft bgs                           | <u> </u>        |                                                                             | CE POINT (RP):<br>ATION OF RP: | Grade<br>Not measur  |                    |
| KISER                                    | REMARK                  |              | cnedule 40                                         | PVC                                                                        |                     |                                      |                 | ELEVA                                                                       | THON OF KF.                    | Not measur           | ea                 |
| DEPTH<br>(IN FEET)                       | SAMPLE ID               | SAMPLE       | BLOV<br>/6"                                        |                                                                            |                     | SAMPLE DI<br>AND I                   | ESCRIP<br>NOTES | TION                                                                        | PID<br>(PPM)                   | WELL<br>PROFILE      | LEGEND             |
| 0                                        |                         | 0-4          |                                                    | 1.5                                                                        |                     | wn, fine sand                        |                 | anics, dry.                                                                 | 24.8                           |                      | Concrete           |
| 1                                        |                         |              |                                                    |                                                                            | Very stron          | g petroleum                          | odor.           |                                                                             |                                |                      | $\boxtimes$        |
|                                          |                         |              |                                                    |                                                                            | +                   |                                      |                 |                                                                             |                                | <b></b> ₩ <b>=</b> ₩ | Native Material    |
| 2                                        |                         | <del> </del> | _                                                  |                                                                            | +                   |                                      |                 |                                                                             |                                | <b>⋘■</b> ₩          |                    |
| 3                                        |                         | 4-8          |                                                    | 1.5                                                                        | 0.15' Gra           | ·· with brown                        | - steining      | grading coar                                                                | rse 32.9                       | <b>⋈≡</b> ₩          | B <u>ento</u> nite |
| 4                                        |                         | 4-0          |                                                    | 1.3                                                                        |                     | y with brown am sand, wet            |                 |                                                                             | Se 32.9                        |                      | Bentonic           |
| 5                                        |                         | Y            | <u>r</u>                                           |                                                                            |                     | -                                    |                 | -                                                                           |                                |                      |                    |
| 6                                        |                         |              |                                                    |                                                                            | 7                   |                                      |                 |                                                                             |                                |                      | Filter Sand        |
| 7                                        |                         |              |                                                    |                                                                            | 7                   |                                      |                 |                                                                             |                                |                      | MM                 |
| 8                                        |                         | 8-12         | 2                                                  | 2.0                                                                        |                     |                                      | gravel to       | F gravel with                                                               | n 29.8                         |                      | Riser              |
| 9                                        |                         |              |                                                    |                                                                            | some fine           | sand.                                |                 |                                                                             |                                |                      |                    |
| 10                                       |                         |              |                                                    |                                                                            | 7                   |                                      |                 |                                                                             |                                |                      | Screen             |
| 11                                       |                         |              |                                                    |                                                                            | 7                   |                                      |                 |                                                                             |                                |                      |                    |
| 12                                       |                         |              |                                                    |                                                                            |                     |                                      |                 |                                                                             |                                |                      | ▼ Water<br>Level   |
| 13                                       |                         |              |                                                    |                                                                            | 1                   |                                      |                 |                                                                             |                                |                      | Lever              |
| 14                                       |                         |              |                                                    |                                                                            | 1                   |                                      |                 |                                                                             |                                |                      |                    |
| 15                                       |                         |              |                                                    |                                                                            | 1                   |                                      |                 |                                                                             |                                |                      |                    |
| 16                                       |                         |              |                                                    |                                                                            |                     |                                      |                 |                                                                             |                                |                      |                    |
| 17                                       |                         |              |                                                    |                                                                            | 1                   |                                      |                 |                                                                             |                                |                      |                    |
| 18                                       |                         |              |                                                    |                                                                            | 1                   |                                      |                 |                                                                             |                                |                      |                    |
| 19                                       |                         |              |                                                    |                                                                            | 1                   |                                      |                 |                                                                             |                                |                      |                    |
| 20                                       |                         |              |                                                    |                                                                            |                     |                                      |                 |                                                                             |                                |                      |                    |
| 21                                       |                         |              |                                                    |                                                                            | _                   |                                      |                 |                                                                             |                                |                      |                    |
| 22                                       |                         |              |                                                    |                                                                            |                     |                                      |                 |                                                                             |                                |                      |                    |
| 23                                       |                         |              |                                                    |                                                                            | 1                   |                                      |                 |                                                                             |                                |                      |                    |
| PROPOR<br>AND<br>SOME<br>LITTLE<br>TRACE | E 10-20%                | 6<br>6<br>6  | BLOW (<br><2<br>2-4<br>4-8<br>8-15<br>15-30<br>>30 | COUNT (COHE<br>VERY SOF<br>SOFT<br>MEDIUM S'<br>STIFF<br>VERY STIF<br>HARD | TIFF                | 0-4<br>4-10<br>10-30<br>30-50<br>>50 | \<br>!<br>!     | INT (GRANULAR<br>VERY LOOSE<br>LOOSE<br>MEDIUM DENSE<br>DENSE<br>VERY DENSE | ,                              | Notes:               |                    |

|                                         |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                | BORIN                                | G / V    | VELL ID                                                                     | ENTIFIC        | CATION:             | SB-8/MW-8        |
|-----------------------------------------|-----------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------|--------------------------------------|----------|-----------------------------------------------------------------------------|----------------|---------------------|------------------|
| 4                                       |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                |                                      |          | SITE NAME:                                                                  | Northern 1     | Petroleum-52        | 1 Bay Street     |
| V                                       |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                |                                      | SIT      | E LOCATION:                                                                 | 521 Bay St     | reet, St. John      | sbury, Vermont   |
| CO Muss                                 | CEDER                 | - Cur                | - 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (000) 40                                                                    | 24.4500        |                                      | INSTALL. | ATION DATE:                                                                 | 18 July 200    | 05                  |                  |
| 63 MILLE<br>RICHMON                     | I STREE<br>ND, VERN   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (802) 43<br>434-607                                                         |                |                                      | J        | OB NUMBER:                                                                  | 08-204262.     | .00                 |                  |
|                                         | ELL DEPT              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             | ING DEPTH:     | 12'                                  |          | ECS REP                                                                     | RESENTATIVE:   | Kim Lockar          | rd, Matt Guerino |
|                                         |                       | ,                    | G DRILLING):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4'                                                                          |                |                                      |          |                                                                             | IG COMPANY:    | ECS Agawa           |                  |
|                                         | DIAMETE               |                      | inch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                             | <i>D</i> ЕРТН: | 2-12 ft bgs                          |          |                                                                             | BORING TYPE    | Geoprobe d          | -                |
|                                         | I TYPE/SIZ<br>DIAMETE |                      | 010 slot sch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | edule 40                                                                    |                | 0.26(1                               |          |                                                                             | NG METHOD:     | Disposable          | Liner            |
|                                         | TYPE/SIZ              |                      | inch<br>hedule 40 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PVC                                                                         | <i>D</i> ЕРТН: | 0-2 ft bgs                           |          |                                                                             | CE POINT (RP): | Grade<br>Not measur | ad               |
| TUSEN                                   | REMARK                |                      | iledule 40 l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · VC                                                                        |                |                                      |          | BLEVI                                                                       | monor m.       | 110t illeasur       | cu               |
| DEPTH<br>(IN FEET)                      | SAMPLE ID             | SAMPLE<br>Depth (et) | BLOWS /6"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RECOVERY (FEET)                                                             |                | Sample De<br>AND N                   |          | TION                                                                        | PID<br>(PPM)   | WELL<br>PROFILE     | LEGEND           |
| 0                                       |                       | 0-4                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.5                                                                         | 0-1.5' Brov    | wn, fine sand                        | with org | anics, dry.                                                                 | 2.4            |                     | Concrete         |
| 1                                       |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                |                                      |          |                                                                             |                | STATE STATE         | $\boxtimes$      |
| 2                                       |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                |                                      |          |                                                                             |                | <b>⋙≡</b> ⋙         | Native Material  |
| 3                                       |                       |                      | $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}$ |                                                                             |                |                                      |          |                                                                             |                | ▓█▓                 |                  |
|                                         |                       | 4-8                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.0                                                                         | 0-3 0' Grav    | y, grading fine                      | sand to  | coarse sand                                                                 |                | ▓■▓                 | Bentonite        |
| 4                                       |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.0                                                                         |                | ne gravel, bori                      |          |                                                                             |                | ▓█▓                 |                  |
| 5                                       |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                |                                      |          |                                                                             | 12.8           | ▓■▓                 |                  |
| 6                                       |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                |                                      |          |                                                                             |                | <b>⋙≡</b> ₩         | Filter Sand      |
| 7                                       |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                |                                      |          |                                                                             |                | <b>⋙■</b> ₩         | E-2-1            |
| 8                                       |                       | 8-12                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.0                                                                         | 0-3.0' Gray    | y, coarse sand                       | with gr  | avel.                                                                       | 20.3           | ▓█▓                 | Riser            |
| 9                                       |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                |                                      |          |                                                                             |                |                     |                  |
| 10                                      |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                |                                      |          |                                                                             |                | ▓█▓                 | Screen           |
| 11                                      |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                |                                      |          |                                                                             |                | ▓█▓                 |                  |
| 12                                      |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                |                                      |          |                                                                             |                |                     | Water Level      |
| 13                                      |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                |                                      |          |                                                                             |                |                     | Ecver            |
| 14                                      |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             | <u> </u>       |                                      |          |                                                                             |                |                     |                  |
| 15                                      |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             | ļ              |                                      |          |                                                                             |                |                     |                  |
| 16                                      |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                |                                      |          |                                                                             |                |                     |                  |
| 17                                      |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                |                                      |          |                                                                             |                |                     |                  |
| 18                                      |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                |                                      |          |                                                                             |                |                     |                  |
| 19                                      |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                |                                      |          |                                                                             |                |                     |                  |
| 20                                      |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                |                                      |          |                                                                             |                |                     |                  |
| 21                                      |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                |                                      |          |                                                                             |                |                     |                  |
| 22                                      |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                |                                      |          |                                                                             |                |                     |                  |
| 23                                      |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                |                                      |          |                                                                             |                |                     |                  |
| PROPOI<br>AND<br>SOME<br>LITTLI<br>TRAC | E 10-20%              |                      | 52<br>2-4<br>1-8<br>3-15<br>15-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VUNT (COHE<br>VERY SOFT<br>SOFT<br>MEDIUM ST<br>STIFF<br>VERY STIFF<br>HARD | IFF            | 0-4<br>4-10<br>10-30<br>30-50<br>>50 |          | INT (GRANULAR<br>VERY LOOSE<br>LOOSE<br>MEDIUM DENSE<br>DENSE<br>VERY DENSE | SOILS)         | Notes:              |                  |

|                                         | A TOP OF THE PROPERTY OF |                | 1                                       |                  |                                                                              |                    | BOR                                  | ING / W         | ELL ID                                                                      | ENTIFIC         | ATION:          | SB-9             |
|-----------------------------------------|--------------------------|----------------|-----------------------------------------|------------------|------------------------------------------------------------------------------|--------------------|--------------------------------------|-----------------|-----------------------------------------------------------------------------|-----------------|-----------------|------------------|
|                                         | E,                       | 3              |                                         |                  |                                                                              |                    |                                      |                 | SITE NAME:                                                                  | Northern P      | etroleum-52     | 1 Bay Street     |
|                                         |                          |                | 1                                       |                  |                                                                              |                    |                                      | SIT             | E LOCATION:                                                                 | 521 Bay Str     | eet, St. John   | sbury, Vermont   |
|                                         |                          |                |                                         |                  |                                                                              |                    |                                      | INSTALL         | ATION DATE:                                                                 | 18 July 200     | 5               |                  |
| 63 MILLE<br>RICHMON                     |                          |                |                                         |                  | (802) 43<br>434-607                                                          | 34-4500<br>6 - fay |                                      | Jo              | OB NUMBER:                                                                  | 08-204262.0     |                 |                  |
|                                         | ELL DEF                  |                | 00+1                                    | 7 (002)          |                                                                              | ING DEPTH:         | 12'                                  |                 | ECS RE                                                                      | PRESENTATIVE:   | Kim Locka       | rd, Matt Guerino |
| DEPTH                                   | TO WATI                  | ER (DU         | RING L                                  | ORILLING):       | 3.5'                                                                         |                    | ı                                    |                 | DRILL                                                                       | ING COMPANY:    | ECS Agaw        |                  |
| SCREEN                                  |                          |                |                                         |                  |                                                                              | <i>D</i> ЕРТН:     |                                      |                 |                                                                             | BORING TYPE     | Geoprobe o      | direct-push      |
|                                         | TYPE/S                   |                |                                         |                  |                                                                              |                    | 1                                    |                 |                                                                             | LING METHOD:    | Disposable      | Liner            |
|                                         | DIAMET<br>TYPE/S         |                |                                         |                  |                                                                              | <i>D</i> ЕРТН:     |                                      |                 |                                                                             | ICE POINT (RP): |                 |                  |
| KISER                                   | REMA                     |                |                                         |                  |                                                                              |                    |                                      |                 | ELE                                                                         | VATION OF RP:   |                 |                  |
| DEPTH<br>(IN FEET)                      | SAMPLE ID                |                | <b>D</b> ЕРТН (FT)                      | BLOWS<br>/6"     | RECOVERY (FEET)                                                              | Ş                  |                                      | DESCRIP D NOTES | TION                                                                        | PID<br>(PPM)    | WELL<br>PROFILE | LEGEND           |
| 0                                       |                          | 0-             | -4                                      |                  | 3.0                                                                          |                    |                                      |                 | on at 3' with                                                               | 1.5             |                 | Concrete         |
| 1                                       |                          |                |                                         |                  |                                                                              | little gra         | vel and or                           | rganics.        |                                                                             |                 |                 | $\boxtimes$      |
| 2                                       |                          |                | •                                       |                  |                                                                              |                    |                                      |                 |                                                                             |                 |                 | Native Material  |
| 3                                       |                          |                |                                         |                  |                                                                              |                    |                                      |                 |                                                                             |                 |                 |                  |
| 4                                       |                          | 4-             | -8                                      |                  | 1.5                                                                          |                    |                                      | and grave       |                                                                             | 2.1             |                 | Bentonite        |
| 5                                       |                          |                |                                         |                  |                                                                              | siit, satu         | rated, old                           | petroleum o     | dor.                                                                        |                 | No Well         |                  |
| 6                                       |                          |                |                                         |                  |                                                                              |                    |                                      |                 |                                                                             |                 |                 | Filter Sand      |
| 7                                       |                          |                |                                         |                  |                                                                              |                    |                                      |                 |                                                                             |                 |                 |                  |
| 8                                       |                          | 8-             | 12                                      |                  | 3.0                                                                          |                    |                                      | coarse sand     | and gravel,                                                                 | 2.0             |                 | Riser            |
| 9                                       |                          |                |                                         |                  |                                                                              | saturated,         | old petrol                           | eum odor.       |                                                                             |                 |                 |                  |
| 10                                      |                          |                |                                         |                  |                                                                              | •                  |                                      |                 |                                                                             |                 |                 | Screen           |
| 11                                      |                          |                |                                         |                  |                                                                              |                    |                                      |                 |                                                                             |                 |                 |                  |
| 12                                      |                          |                |                                         |                  |                                                                              |                    |                                      |                 |                                                                             |                 |                 | Water Level      |
| 13                                      |                          |                |                                         |                  |                                                                              | •                  |                                      |                 |                                                                             |                 |                 | Level            |
| 14                                      |                          |                |                                         |                  |                                                                              |                    |                                      |                 |                                                                             |                 |                 |                  |
| 15                                      |                          |                |                                         |                  |                                                                              | •                  |                                      |                 |                                                                             |                 |                 |                  |
| 16                                      |                          |                |                                         |                  |                                                                              |                    |                                      |                 |                                                                             |                 | •               |                  |
| 17                                      |                          |                |                                         |                  |                                                                              | •                  |                                      |                 |                                                                             |                 |                 |                  |
| 18                                      |                          |                |                                         |                  |                                                                              | •                  |                                      |                 |                                                                             |                 |                 |                  |
| 19                                      |                          |                |                                         |                  |                                                                              |                    |                                      |                 |                                                                             |                 |                 |                  |
| 20                                      |                          |                |                                         |                  |                                                                              |                    |                                      |                 |                                                                             |                 |                 |                  |
| 21                                      |                          |                |                                         |                  |                                                                              | •                  |                                      |                 |                                                                             |                 |                 |                  |
| 22                                      |                          |                |                                         |                  |                                                                              | •                  |                                      |                 |                                                                             |                 |                 |                  |
| 23                                      |                          |                |                                         |                  |                                                                              |                    |                                      |                 |                                                                             |                 |                 |                  |
| PROPOI<br>AND<br>SOME<br>LITTLI<br>TRAC | E 10-20                  | 1%<br>1%<br>1% | <2<br>2-4<br>4-8<br>8-15<br>15-3<br>>30 | \<br>S<br>N<br>S | JNT (COHE:<br>/ERY SOFT<br>SOFT<br>MEDIUM STI<br>STIFF<br>/ERY STIFF<br>HARD | FF                 | 0-4<br>4-10<br>10-30<br>30-50<br>>50 | )<br>)          | JNT (GRANULAR<br>VERY LOOSE<br>LOOSE<br>MEDIUM DENSE<br>DENSE<br>VERY DENSE | SOILS)          | Notes:          |                  |

| ,                                        | The same of the sa |              |                                         |                  |                                                                              |                          | Bo     | ORING                                | j / V   | VELL ID                                                                     | ENTIFI        | CATION:         | SB-10             |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------|------------------|------------------------------------------------------------------------------|--------------------------|--------|--------------------------------------|---------|-----------------------------------------------------------------------------|---------------|-----------------|-------------------|
| 4                                        | E,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3            |                                         |                  |                                                                              |                          |        |                                      |         | SITE NAME:                                                                  |               | Petroleum-52    |                   |
| /                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1                                       |                  |                                                                              |                          |        |                                      | SIT     | E LOCATION:                                                                 | 521 Bay S     | treet, St. John | nsbury, Vermont   |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  |                                                                              |                          |        | IN                                   | STALL   | ATION DATE:                                                                 | 18 July 20    | 005             |                   |
| 63 MILLE<br>RICHMON                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  | (802) 43<br>434-607                                                          |                          |        |                                      | J       | OB NUMBER:                                                                  | 08-204262     |                 |                   |
|                                          | ELL DEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 00+1                                    | 7 (002)          |                                                                              | ING DEPTH:               | 12'    | ,                                    |         | ECS REA                                                                     | PRESENTATIVE  | Kim Lock        | ard, Matt Guerino |
| DEPTH                                    | TO WATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ER (DU       | RING L                                  | RILLING):        | 5.5'                                                                         |                          |        |                                      |         | DRILL                                                                       | ING COMPANY   |                 |                   |
|                                          | DIAMET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                         |                  |                                                                              | <i>D</i> ЕРТН:           |        |                                      |         |                                                                             | BORING TYPE   |                 | direct-push       |
|                                          | TYPE/S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                         | -                |                                                                              |                          |        |                                      |         |                                                                             | LING METHOD   | 2 ispositor.    | Liner             |
|                                          | DIAMET<br>TYPE/S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                         |                  |                                                                              | <i>D</i> ЕРТН:           |        |                                      |         |                                                                             | ICE POINT (RI |                 |                   |
| KISER                                    | REMAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                         |                  |                                                                              |                          |        |                                      |         | ELE                                                                         | VATION OF RP  |                 |                   |
| DEPTH<br>(IN FEET)                       | SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | <b>ДЕРТН</b> (FT)                       | BLOWS<br>/6"     | RECOVERY (FEET)                                                              | Ş                        | SAMI   | PLE DES                              |         | TION                                                                        | PID<br>(PPM)  | WELL<br>PROFILE | LEGEND            |
| 0                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-           | -4                                      |                  | 3.5                                                                          | 0-3.5' Bro               | wn-gi  | reen with b                          | lack s  | taining,                                                                    | 2.0           |                 | Concrete          |
| 1                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  |                                                                              | grading<br>and trace     |        |                                      | nd wi   | th little grave                                                             | 1             |                 | $\boxtimes$       |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  |                                                                              | and trace                | C OI S | iit, ui y.                           |         |                                                                             |               |                 | Native Material   |
| 2                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  |                                                                              |                          |        |                                      |         |                                                                             |               |                 |                   |
| 3                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  |                                                                              |                          |        |                                      |         |                                                                             |               |                 |                   |
| 4                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4            | -8                                      |                  | 3.0                                                                          |                          |        |                                      |         | organics, silt elow boring,                                                 | 5.7           |                 | Bentonite         |
| 5                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | <b>T</b>                                |                  |                                                                              | old odor                 |        | ic sand, we                          | t 1.5 t | ciow boring,                                                                |               | No Well         |                   |
| 6                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  |                                                                              | ·                        |        |                                      |         |                                                                             |               |                 | Filter Sand       |
| 7                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  |                                                                              |                          |        |                                      |         |                                                                             |               |                 |                   |
| 8                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8-           | 12                                      |                  | 3.0                                                                          |                          |        |                                      |         | fine sand witl                                                              |               | 1               | Riser             |
| 9                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  |                                                                              | trace of graboring 2" of |        |                                      | 10 odc  | r, at 2.0' belo                                                             | ow            |                 |                   |
| 10                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  |                                                                              | ,                        |        |                                      |         |                                                                             |               |                 | Screen            |
| 11                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  |                                                                              |                          |        |                                      |         |                                                                             |               |                 |                   |
| 12                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  |                                                                              |                          |        |                                      |         |                                                                             |               | <del> </del>    | Water             |
| 13                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  |                                                                              |                          |        |                                      |         |                                                                             |               |                 | Level             |
| 14                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  |                                                                              | ,                        |        |                                      |         |                                                                             |               |                 |                   |
| 15                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  |                                                                              |                          |        |                                      |         |                                                                             |               |                 |                   |
| 16                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  |                                                                              |                          |        |                                      |         |                                                                             |               | +               |                   |
| 17                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  |                                                                              |                          |        |                                      |         |                                                                             |               |                 |                   |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  |                                                                              |                          |        |                                      |         |                                                                             |               |                 |                   |
| 18                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  |                                                                              |                          |        |                                      |         |                                                                             |               |                 |                   |
| 19                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  | 1                                                                            |                          |        |                                      |         |                                                                             |               | +               |                   |
| 20                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  | 1                                                                            |                          |        |                                      |         |                                                                             |               |                 |                   |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  |                                                                              |                          |        |                                      |         |                                                                             |               |                 |                   |
| 22                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                         |                  |                                                                              |                          |        |                                      |         |                                                                             |               |                 |                   |
| 23                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1                                       | DI OW OO         | INT (COURT                                                                   | SIVE COURS               | 1      | Di C                                 | OW 00   | INIT (CDANUU AD                                                             | COIL C)       | Natar           |                   |
| PROPOF<br>AND<br>SOME<br>LITTLE<br>TRACE | E 10-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | %<br>%<br>!% | <2<br>2-4<br>4-8<br>8-15<br>15-3<br>>30 | \<br>S<br>M<br>S | JNT (COHES<br>/ERY SOFT<br>SOFT<br>MEDIUM STI<br>STIFF<br>/ERY STIFF<br>HARD |                          |        | 0-4<br>4-10<br>10-30<br>30-50<br>>50 |         | JNT (GRANULAR<br>VERY LOOSE<br>LOOSE<br>MEDIUM DENSE<br>DENSE<br>VERY DENSE | SUILS)        | Notes:          |                   |

|                                          |                     |          |                                   |                 |                                                                      |                | BORING / W                         | ELL ID                                                                     | ENTIFIC        | CATION:             | SB-11/MW-11        |
|------------------------------------------|---------------------|----------|-----------------------------------|-----------------|----------------------------------------------------------------------|----------------|------------------------------------|----------------------------------------------------------------------------|----------------|---------------------|--------------------|
| <b>A</b>                                 |                     |          |                                   |                 |                                                                      |                |                                    | SITE NAME:                                                                 |                | Petroleum-52        |                    |
| V                                        |                     | 7        |                                   |                 |                                                                      |                | SIT                                | E LOCATION:                                                                | 521 Bay St     | reet, St. Johr      | sbury, Vermont     |
|                                          |                     |          |                                   |                 |                                                                      |                | INSTALL                            | ATION DATE:                                                                | 18 July 20     |                     | •                  |
| 63 MILLE<br>RICHMON                      |                     |          |                                   |                 | (802) 43<br>434-607                                                  |                | J                                  | OB NUMBER:                                                                 | 08-204262      |                     |                    |
|                                          | ELL DEPT            |          | 12'                               | 7 (002)         |                                                                      | NG DEPTH:      | 12'                                | ECS REP                                                                    | RESENTATIVE:   |                     | rd, Matt Guerino   |
| <b>ДЕРТН</b>                             | TO WATER            | R (DU    | JRING D                           | PRILLING):      | 6'                                                                   |                |                                    | DRILLIN                                                                    | IG COMPANY:    | ECS Agawa           |                    |
|                                          | DIAMETE             |          | 1-inc                             |                 |                                                                      | <i>DEPTH:</i>  | 2-12 ft bgs                        |                                                                            | BORING TYPE    | Geoprobe d          |                    |
|                                          | TYPE/SIZ            |          |                                   | ) slot sche     | edule 40                                                             |                |                                    |                                                                            | NG METHOD:     | Disposable          | Liner              |
|                                          | DIAMETE<br>TYPE/SIZ |          | 1-inc                             | ch<br>dule 40 P | NC                                                                   | <i>D</i> ЕРТН: | 0-2 ft bgs                         |                                                                            | CE POINT (RP): | Grade<br>Not measur | ad                 |
| NISER                                    | REMARK              |          | Sche                              | dule 40 P       | VC                                                                   |                |                                    | ELEVA                                                                      | ATION OF MI.   | Not measur          | eu                 |
|                                          | 1                   |          |                                   |                 |                                                                      |                |                                    |                                                                            |                |                     |                    |
| + <del>(</del>                           | ₽                   | Ц        | J [E                              |                 | , R≺                                                                 |                |                                    |                                                                            |                |                     |                    |
| DEPTH<br>(IN FEET                        | SAMPLE ID           | ₫        | ОЕРТН (FT)                        | BLOWS           | RECOVERY<br>(FEET)                                                   | 9              | SAMPLE DESCRIP                     | TION                                                                       | PID            | WELL                | LEGEND             |
| DEI<br>N F                               | ₹MF                 | 4        | :PT                               | /6"             |                                                                      |                | AND NOTES                          |                                                                            | (PPM)          | PROFILE             | LEGLIND            |
| =                                        | ŝ                   |          | מׁ                                |                 | 2                                                                    |                |                                    |                                                                            |                |                     |                    |
| 0                                        |                     | (        | 0-4                               |                 | 2.0                                                                  |                | nt brown to brown wit              | h bottom 3"                                                                | 1.9            |                     | Concrete           |
| 1                                        |                     |          |                                   |                 |                                                                      | black sta      | nining, no odors, dry.             |                                                                            |                |                     | $\boxtimes$        |
| 2                                        |                     |          |                                   |                 | +                                                                    |                |                                    |                                                                            |                | <b>⋙■</b> ₩         | Native Material    |
| 3                                        |                     |          |                                   |                 |                                                                      |                |                                    |                                                                            |                | ▓■▓                 |                    |
|                                          |                     |          | 4-8                               |                 | 4.0                                                                  | 0-4 0' Grav    | y, silt with organics, w           | ret 2 0' helov                                                             | 131.6          |                     | B <u>ento</u> nite |
| 4                                        |                     | <u> </u> | <del>1-</del> 0                   |                 | 4.0                                                                  |                | sheen on groundwater               |                                                                            | 131.0          | ▓█▓                 |                    |
| 5                                        |                     | <u> </u> |                                   |                 |                                                                      |                |                                    |                                                                            |                |                     | Filter Cand        |
| 6                                        |                     |          | ▼                                 |                 |                                                                      |                |                                    |                                                                            |                | ▓█▓                 | Filter Sand        |
| 7                                        |                     |          | 1.10                              |                 | 2.0                                                                  | 0.1.52.0       |                                    |                                                                            | 107.6          |                     | n:                 |
| 8                                        |                     | 8        | 3-12                              |                 | 3.0                                                                  | 1.5-3.0' Bı    | ne as above. rown, coarse sand and | gravel, sheen                                                              | 127.6          | ▓█▓                 | Riser              |
| 9                                        |                     |          |                                   |                 |                                                                      | and oil glo    | bules throughout.                  |                                                                            |                | ▓█▓                 | <u> </u>           |
| 10                                       |                     |          |                                   |                 |                                                                      |                |                                    |                                                                            |                | ▓█▓                 | Screen             |
| 11                                       |                     |          |                                   |                 |                                                                      |                |                                    |                                                                            |                | 888 <del></del> 888 |                    |
| 12                                       |                     |          |                                   |                 |                                                                      |                |                                    |                                                                            |                |                     | ▼ Water<br>Level   |
| 13                                       |                     |          |                                   |                 |                                                                      |                |                                    |                                                                            |                |                     |                    |
| 14                                       |                     |          |                                   |                 |                                                                      |                |                                    |                                                                            |                |                     |                    |
| 15                                       |                     |          |                                   |                 |                                                                      |                |                                    |                                                                            |                |                     |                    |
| 16                                       |                     |          |                                   |                 |                                                                      |                |                                    |                                                                            |                |                     |                    |
| 17                                       |                     |          |                                   |                 |                                                                      |                |                                    |                                                                            |                |                     |                    |
| 18                                       |                     |          |                                   |                 |                                                                      |                |                                    |                                                                            |                |                     |                    |
| 19                                       |                     |          |                                   |                 |                                                                      |                |                                    |                                                                            |                |                     |                    |
| 20                                       |                     |          |                                   |                 |                                                                      |                |                                    |                                                                            |                |                     |                    |
| 21                                       |                     |          |                                   |                 |                                                                      |                |                                    |                                                                            |                |                     |                    |
| 22                                       |                     |          |                                   |                 |                                                                      |                |                                    |                                                                            |                |                     |                    |
| 23                                       |                     |          |                                   |                 |                                                                      |                |                                    |                                                                            |                |                     |                    |
| PROPOF<br>AND<br>SOME<br>LITTLE<br>TRACE | 10-20%              | ,<br>0   | <2<br>2-4<br>4-8<br>8-15<br>15-30 | \<br>S<br>P     | UNT (COHES<br>VERY SOFT<br>SOFT<br>MEDIUM STI<br>STIFF<br>VERY STIFF | ŕ              | 0-4<br>4-10<br>10-30<br>30-50      | NT (GRANULAR<br>VERY LOOSE<br>LOOSE<br>MEDIUM DENSE<br>DENSE<br>VERY DENSE | SOILS)         | Notes:              |                    |
|                                          |                     |          | >30                               |                 | HARD                                                                 |                | 100                                | VEIXT DEIXOE                                                               |                |                     |                    |

| DEPTH SCREEN SCREEN RISER                | ND, VERN<br>ELL DEPT | MONT<br>TH: CH: CR: CR: CR: CR: CR: CR: CR: CR: CR: CR | 0547<br>12'<br>RING D<br>1-inc<br>0.010<br>1-inc | 7 (802)<br>PRILLING):<br>Ch  O slot sche | 5.5'<br>edule 40                                                          | 6 - FAX NG DEPTH: DEPTH: | 12     | INSTA                                          | SITE :              | SITE NAME: LOCATION: TION DATE: B NUMBER: ECS REPE DRILLIN SAMPLI       | Note 18 and 18 a | Thern F Bay St July 200 -204262.  VIATIVE: DMPANY: NG TYPE METHOD: | Petroleum-52<br>reet, St. John<br>95<br>00 | lirect-push<br>Liner      |
|------------------------------------------|----------------------|--------------------------------------------------------|--------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------|--------------------------|--------|------------------------------------------------|---------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|---------------------------|
| DEPTH<br>(IN FEET)                       | SAMPLE ID            |                                                        | <b>ДЕРТН (FT)</b>                                | BLOWS<br>/6"                             | RECOVERY (FEET)                                                           | ξ                        | Бам    | PLE DESCR<br>AND <b>N</b> OTE                  |                     | ION                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PID<br>(PPM)                                                       | WELL<br>PROFILE                            | LEGEND                    |
| 0<br>1<br>2<br>3                         |                      | 0                                                      | 1-4                                              |                                          | 3.0                                                                       | 0-3.0' Gra<br>odor.      | y, fin | e sand and silt                                | , las               | t 6" strong                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76.4                                                               |                                            | Concrete  Native Material |
| 4<br>5<br>6<br>7                         | 4-8                  |                                                        |                                                  |                                          | 3.0                                                                       |                          | moi    | plack staining,<br>st, saturated be            |                     |                                                                         | lt,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 89.5                                                               |                                            | Bentonite Filter Sand     |
| 8<br>9<br>10<br>11                       | 8 8-12<br>0 SB12     |                                                        |                                                  |                                          |                                                                           |                          | own    | e.<br>, silt with orga<br>e Sand with gra      |                     |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83                                                                 |                                            | Riser Screen              |
| 12<br>13<br>14<br>15                     | ~11'                 |                                                        |                                                  |                                          |                                                                           |                          |        |                                                |                     |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    | **************************************     | <b>▼</b> Water<br>Level   |
| 16<br>17<br>18                           |                      |                                                        |                                                  |                                          |                                                                           |                          |        |                                                |                     |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                            |                           |
| 19<br>20<br>21<br>22                     |                      |                                                        |                                                  |                                          |                                                                           |                          |        |                                                |                     |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                            |                           |
| PROPOR<br>AND<br>SOME<br>LITTLE<br>TRACE | 10-20%               | )<br>)                                                 | <2<br>2-4<br>4-8<br>8-15-30                      | \<br>S<br>M<br>S                         | JNT (COHES<br>/ERY SOFT<br>SOFT<br>MEDIUM STI<br>MEDIUM STI<br>/ERY STIFF |                          |        | BLOW 0<br>0-4<br>4-10<br>10-30<br>30-50<br>>50 | VI<br>LO<br>M<br>DI | IT (GRANULAR S<br>ERY LOOSE<br>DOSE<br>EDIUM DENSE<br>ENSE<br>ERY DENSE | SOILS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5)                                                                 | Notes:                                     |                           |

|                                          |             |                  |                                  |              |                                                                      |                           | _     |                           |                                                                             |       |                 |                        |                  |
|------------------------------------------|-------------|------------------|----------------------------------|--------------|----------------------------------------------------------------------|---------------------------|-------|---------------------------|-----------------------------------------------------------------------------|-------|-----------------|------------------------|------------------|
|                                          |             |                  |                                  |              |                                                                      |                           | B     | ORING / V                 |                                                                             |       |                 |                        | SB-13/MW-13      |
| 4                                        | -           |                  |                                  |              |                                                                      |                           |       |                           | SITE NAME:                                                                  | No    | orthern F       | Petroleum-52           | 1 Bay Street     |
|                                          |             | 7                |                                  |              |                                                                      |                           |       | SIT                       | E LOCATION:                                                                 | 52    | 1 Bay St        | reet, St. Johr         | sbury, Vermont   |
| CO N4                                    | C           |                  | ), u== 0                         | 04           | (000) 40                                                             | 4.4500                    |       | INSTALL                   | ATION DATE:                                                                 | 18    | July 200        | )5                     |                  |
| 63 MILLE<br>RICHMON                      |             |                  |                                  |              | (802) 43<br>434-607                                                  |                           |       | Ĵ                         | OB NUMBER:                                                                  |       | -204262.        |                        |                  |
|                                          | ELL DEPT    |                  | 12'                              | . (502)      |                                                                      | NG DEPTH:                 | 12    | ,                         | ECS REP                                                                     |       |                 |                        | rd, Matt Guerino |
|                                          |             |                  |                                  | PRILLING):   | 5.5'                                                                 |                           |       |                           |                                                                             |       | OMPANY:         | ECS Agawa              |                  |
| SCREEN                                   | DIAMETE     | ER:              | 1-inc                            | ch           |                                                                      | <i>D</i> ЕРТН:            | 2-1   | 12 ft bgs                 |                                                                             | BORI  | NG TYPE         | Geoprobe d             | irect-push       |
| SCREEN                                   | TYPE/SIZ    | ZE:              | 0.010                            | ) slot sche  | edule 40                                                             | PVC                       |       |                           | SAMPLI                                                                      | ING M | <i>ЛЕТНО</i> D: | Disposable 1           | Liner            |
|                                          | DIAMETE     |                  | 1-inc                            |              |                                                                      | <i>D</i> ЕРТН:            | 0-2   | 2 ft bgs                  | REFERENC                                                                    |       |                 | Grade                  |                  |
| RISER                                    | TYPE/SIZ    |                  | Sche                             | dule 40 P    | VC                                                                   |                           |       |                           | ELEVA                                                                       | ATION | V OF RP:        | Not measur             | ed               |
|                                          | REMARI      | KS:              |                                  | T            |                                                                      |                           |       |                           |                                                                             |       |                 |                        |                  |
| DEPTH<br>(IN FEET)                       | SAMPLE ID   | A IdMA S         | ОЕРТН (FT)                       | BLOWS<br>/6" | RECOVERY<br>(FEET)                                                   | 5                         | SAM   | PLE DESCRIP<br>AND NOTES  | TION                                                                        |       | PID<br>(PPM)    | WELL<br>PROFILE        | LEGEND           |
| 0                                        |             | (                | 0-4                              |              | 4.0                                                                  | 0-4.0' Bro                | wn, f | ine sand with litt        | le gravel, dry.                                                             |       | 20.5            |                        | Concrete         |
| 1                                        |             |                  |                                  |              |                                                                      |                           |       |                           |                                                                             |       | -               |                        | $\boxtimes$      |
| 2                                        |             |                  |                                  |              |                                                                      |                           |       |                           |                                                                             |       |                 | ▓█▓                    | Native Material  |
| 3                                        |             |                  |                                  |              |                                                                      |                           |       |                           |                                                                             |       |                 | ▓█▓                    |                  |
| 4                                        | SB13        |                  | 4-8                              |              | 4.0                                                                  | 0-4 0' Grav               | v-hro | own, fine sand wi         | th organics                                                                 |       | 166.8           | ▓█▓                    | Bentonite        |
|                                          | ~4'         |                  |                                  |              | 7.0                                                                  |                           |       | .5' below boring          |                                                                             |       | 100.0           |                        |                  |
| 5                                        |             |                  | <b>Y</b>                         |              |                                                                      | sheen.                    |       |                           |                                                                             |       |                 | ▓█▓                    |                  |
| 6                                        | SB13<br>~7' |                  |                                  |              |                                                                      |                           |       |                           |                                                                             |       |                 |                        | Filter Sand      |
| 7                                        | ~7          |                  |                                  |              |                                                                      |                           |       |                           |                                                                             |       |                 |                        | MAM              |
| 8                                        |             | 8                | 3-12                             |              | 4.0                                                                  | 0-3.0' Sam                |       |                           |                                                                             |       | 65              |                        | Riser            |
| 9                                        |             |                  |                                  |              |                                                                      | 3.0-4.0' Li<br>strong odo |       | orown, coarse sar<br>een. | d and gravel,                                                               |       |                 |                        | Ш                |
| 10                                       |             |                  |                                  |              |                                                                      |                           |       |                           |                                                                             |       |                 |                        | Screen           |
| 11                                       |             |                  |                                  |              |                                                                      |                           |       |                           |                                                                             |       |                 | ▓█▓                    |                  |
| 12                                       |             |                  |                                  |              |                                                                      |                           |       |                           |                                                                             |       |                 | 000 <del>000</del> 000 | Water Level      |
| 13                                       |             |                  |                                  |              |                                                                      |                           |       |                           |                                                                             |       |                 |                        | Level            |
| 14                                       |             |                  |                                  |              |                                                                      |                           |       |                           |                                                                             |       |                 |                        |                  |
| 15                                       |             |                  |                                  |              |                                                                      |                           |       |                           |                                                                             |       |                 |                        |                  |
| 16                                       |             |                  |                                  |              |                                                                      |                           |       |                           |                                                                             |       |                 |                        |                  |
| 17                                       |             |                  |                                  |              |                                                                      |                           |       |                           |                                                                             |       |                 |                        |                  |
| 18                                       |             |                  |                                  |              |                                                                      |                           |       |                           |                                                                             |       |                 |                        |                  |
| 19                                       |             |                  |                                  |              |                                                                      |                           |       |                           |                                                                             |       |                 |                        |                  |
| 20                                       |             |                  |                                  |              |                                                                      |                           |       |                           |                                                                             |       |                 |                        |                  |
| 21                                       |             |                  |                                  |              |                                                                      |                           |       |                           |                                                                             |       |                 |                        |                  |
| 22                                       |             |                  |                                  |              |                                                                      |                           |       |                           |                                                                             |       |                 |                        |                  |
| 23                                       |             |                  |                                  |              |                                                                      |                           |       |                           |                                                                             |       |                 |                        |                  |
| PROPOR<br>AND<br>SOME<br>LITTLE<br>TRACE | 10-20%      | ,<br>,<br>,<br>, | <2<br>2-4<br>4-8<br>8-15<br>15-3 | 0            | JNT (COHES<br>/ERY SOFT<br>SOFT<br>MEDIUM STI<br>STIFF<br>/ERY STIFF | ,                         |       | 0-4                       | JNT (GRANULAR<br>VERY LOOSE<br>LOOSE<br>MEDIUM DENSE<br>DENSE<br>VERY DENSE |       | 5)              | Notes:                 |                  |

|                                         | 1               |              |                                         |                    |                                                      |                      | BORING / V                    | VELL ID                                                                     | ENTIFIC         | ATION:        | <b>SB-14</b>     |
|-----------------------------------------|-----------------|--------------|-----------------------------------------|--------------------|------------------------------------------------------|----------------------|-------------------------------|-----------------------------------------------------------------------------|-----------------|---------------|------------------|
| (                                       |                 |              | 1                                       |                    |                                                      |                      |                               | SITE NAME:                                                                  | Northern P      | etroleum-521  | l Bay Street     |
|                                         |                 |              | 1                                       |                    |                                                      |                      | SIT                           | E LOCATION:                                                                 | 521 Bay Str     | eet, St. John | sbury, Vermont   |
| 00.14                                   |                 |              |                                         | 24                 | (000) 10                                             | 1 1500               | INSTALL                       | ATION DATE:                                                                 | 18 July 200     | 5             |                  |
| 63 MILLE<br>RICHMON                     |                 |              |                                         |                    | (802) 43<br>134-607                                  |                      | J                             | OB NUMBER:                                                                  | 08-204262.0     |               |                  |
|                                         | ELL DEF         |              | 0011                                    | (002)              |                                                      | ING DEPTH:           | 12'                           | ECS RE                                                                      | PRESENTATIVE:   | Kim Locka     | rd, Matt Guerino |
| DEPTH                                   | TO WATI         | ER (DU       | JRING L                                 | PRILLING):         | 6'                                                   |                      | 1                             | DRILL                                                                       | ING COMPANY:    | ECS Agawa     |                  |
| SCREEN                                  | DIAMET          | TER:         |                                         |                    |                                                      | <i>D</i> ЕРТН:       |                               |                                                                             | BORING TYPE     | Geoprobe o    | lirect-push      |
|                                         | TYPE/S          |              |                                         |                    |                                                      |                      |                               |                                                                             | LING METHOD:    | Disposable    | Liner            |
|                                         | DIAMET          |              |                                         |                    |                                                      | <i>D</i> ЕРТН:       |                               |                                                                             | ICE POINT (RP): |               |                  |
| RISER                                   | TYPE/S<br>REMAI |              |                                         |                    |                                                      |                      |                               | ELE                                                                         | VATION OF RP:   |               |                  |
|                                         | KEMAI           | KKS.         |                                         |                    |                                                      |                      |                               |                                                                             |                 |               |                  |
| + ( <u> </u>                            | ₽               | ш            | <del>[</del>                            |                    | R<br>≺                                               |                      |                               |                                                                             |                 |               |                  |
| DEPTH<br>(IN FEET)                      | SAMPLE ID       | 1 <u>P</u> L | ЕРТН (FT)                               | BLOWS              | RECOVERY<br>(FEET)                                   | 5                    | SAMPLE DESCRIP                | TION                                                                        | PID             | WELL          | LEGEND           |
| DEI<br>N F                              | Ä               | ΑĀ           | ΈPΤ                                     | /6"                | CFE                                                  |                      | AND NOTES                     |                                                                             | (PPM)           | PROFILE       | LEGEND           |
| )                                       | Ś               | 0)           | ۵                                       |                    | R                                                    |                      |                               |                                                                             |                 |               |                  |
| 0                                       |                 | 0            | )-4                                     |                    | 2.0                                                  | 0-1.5' Ligl          | ht brown, fine to medi        | um sand, dry.                                                               | . 2.2           |               | Concrete         |
|                                         |                 |              |                                         |                    |                                                      |                      | ght brown, fine sand, o       |                                                                             |                 |               | $\boxtimes$      |
| 1                                       |                 |              |                                         |                    |                                                      |                      |                               |                                                                             |                 |               | Native Material  |
| 2                                       |                 |              |                                         |                    |                                                      |                      |                               |                                                                             |                 |               | Native Material  |
| 3                                       |                 |              |                                         |                    |                                                      |                      |                               |                                                                             |                 |               |                  |
| 4                                       |                 | 4            | 8                                       |                    | 3.0                                                  | Light brow           | vn, fine sand, wet 1.0'       | below boring                                                                | 3.2             |               | Bentonite        |
| 5                                       |                 |              | ▼                                       |                    |                                                      |                      |                               |                                                                             |                 | No Well       |                  |
| 6                                       |                 |              |                                         |                    |                                                      |                      |                               |                                                                             |                 |               | Filter Sand      |
| 7                                       |                 |              |                                         |                    |                                                      |                      |                               |                                                                             |                 |               | 1711             |
| 8                                       |                 | 8-           | -12                                     |                    | 3.5                                                  | 0-1.5' Olivereading. | ve gray, fine sand with       | some silt, PI                                                               | D 3.2           | j             | Riser            |
| 9                                       |                 |              |                                         |                    |                                                      | 1.5-2.5' G           | ray, fine sand with sor       | ne silt, PID                                                                |                 |               |                  |
| 10                                      |                 |              |                                         |                    |                                                      | reading. 2.5-3.5' Li | ight brown, medium sa         | and with some                                                               | e 4.5           |               | Screen           |
| 11                                      |                 |              |                                         |                    |                                                      | gravel.              |                               |                                                                             |                 |               |                  |
| 12                                      |                 |              |                                         |                    |                                                      |                      |                               |                                                                             |                 |               | Water Level      |
| 13                                      |                 |              |                                         |                    |                                                      |                      |                               |                                                                             |                 |               |                  |
| 14                                      |                 |              |                                         |                    |                                                      |                      |                               |                                                                             |                 |               |                  |
| 15                                      |                 |              |                                         |                    |                                                      |                      |                               |                                                                             |                 |               |                  |
| 16                                      |                 |              |                                         |                    |                                                      |                      |                               |                                                                             |                 |               |                  |
| 17                                      |                 |              |                                         |                    |                                                      |                      |                               |                                                                             |                 |               |                  |
| 18                                      |                 |              |                                         |                    |                                                      |                      |                               |                                                                             |                 |               |                  |
| 19                                      |                 |              |                                         |                    |                                                      |                      |                               |                                                                             |                 |               |                  |
| 20                                      |                 |              |                                         |                    |                                                      |                      |                               |                                                                             |                 |               |                  |
| 21                                      |                 |              |                                         |                    | <del>                                     </del>     |                      |                               |                                                                             |                 |               |                  |
| 22                                      |                 |              |                                         |                    |                                                      |                      |                               |                                                                             |                 |               |                  |
| 23                                      |                 |              |                                         | DI SIII            | NT (22:                                              | N. (E. C. 2:         |                               | INT (CT                                                                     |                 | N.            |                  |
| PROPOI<br>AND<br>SOME<br>LITTLI<br>TRAC | E 10-20         | %<br>%<br>!% | <2<br>2-4<br>4-8<br>8-15<br>15-3<br>>30 | S<br>M<br>S<br>0 V | NT (COHES ERY SOFT OFT IEDIUM STI TIFF ERY STIFF ARD | ,                    | 0-4<br>4-10<br>10-30<br>30-50 | UNT (GRANULAR<br>VERY LOOSE<br>LOOSE<br>MEDIUM DENSE<br>DENSE<br>VERY DENSE | (SOILS)         | Notes:        |                  |

|                                          | 1                |             |                                   |              |                                                                              |                | BORING / W                                         | ELL ID                                                                      | ENTIFIC        | ATION:          | SB-15            |
|------------------------------------------|------------------|-------------|-----------------------------------|--------------|------------------------------------------------------------------------------|----------------|----------------------------------------------------|-----------------------------------------------------------------------------|----------------|-----------------|------------------|
| 4                                        | E.               |             |                                   |              |                                                                              |                |                                                    | SITE NAME:                                                                  | Northern P     | etroleum-52     | 1 Bay Street     |
|                                          |                  |             |                                   |              |                                                                              |                | Siti                                               | E LOCATION:                                                                 | 521 Bay St     | reet, St. John  | sbury, Vermont   |
| 62 Muus                                  | T CTDE           | ET C        | ) UTE 2                           | 01           | (902) 43                                                                     | 4 4500         | INSTALLA                                           | TION DATE:                                                                  | 18 July 200    | )5              |                  |
| 63 MILLE<br>RICHMON                      |                  |             |                                   |              | (802) 43<br>434-607                                                          |                | Jo                                                 | OB NUMBER:                                                                  | 08-204262.     | 00              |                  |
|                                          | ELL DEP          |             |                                   | (552)        |                                                                              | ING DEPTH:     | 12'                                                | ECS REA                                                                     | PRESENTATIVE:  | Kim Locka       | rd, Matt Guerino |
| DEPTH                                    | TO WATE          | ER (DU      | IRING D                           | PRILLING):   | 5'                                                                           |                |                                                    | Drilli                                                                      | ING COMPANY:   | ECS Agaw        |                  |
| Screen                                   |                  | -           |                                   |              |                                                                              | <i>D</i> ЕРТН: |                                                    |                                                                             | BORING TYPE    | Geoprobe o      | •                |
|                                          | TYPE/Si          |             |                                   |              | <del></del>                                                                  |                | 1                                                  |                                                                             | LING METHOD:   | Disposable      | Liner            |
|                                          | DIAMET           |             |                                   |              |                                                                              | <i>DEPTH:</i>  |                                                    |                                                                             | ICE POINT (RP) | :               |                  |
| KISER                                    | TYPE/SI<br>REMAR |             |                                   |              |                                                                              |                |                                                    | ELEV                                                                        | VATION OF RP:  |                 |                  |
|                                          | KEMAN            | (AS.        |                                   |              |                                                                              | 1              |                                                    |                                                                             |                | 1               | l                |
| DEPTH<br>(IN FEET)                       | SAMPLEID         | SAMPLE      | <b>ДЕРТН</b> (FT)                 | BLOWS<br>/6" | RECOVERY (FEET)                                                              | <u> </u>       | SAMPLE DESCRIP<br>AND NOTES                        | TION                                                                        | PID<br>(PPM)   | WELL<br>PROFILE | LEGEND           |
| 0                                        |                  | 0           | )-4                               |              | 3.0                                                                          |                | y, medium sand with s                              | ome coarse to                                                               | o 3.6          |                 | Concrete         |
| 1                                        |                  |             |                                   |              | + +                                                                          | fine sand      | d, dry.<br>ight brown, same as ab                  | ONA                                                                         |                |                 | $\boxtimes$      |
|                                          |                  |             |                                   |              |                                                                              | 1.5-2.0 Oli    | ive gray, same as abov                             | e                                                                           |                |                 | Native Material  |
| 2                                        |                  |             |                                   |              |                                                                              | 2.0-3.0° G1    | ray, same as above                                 |                                                                             |                |                 |                  |
| 3                                        |                  |             |                                   |              |                                                                              | İ              |                                                    |                                                                             |                |                 |                  |
| 4                                        | 4-8              |             |                                   |              | 4.0                                                                          | below bo       |                                                    |                                                                             | 11             | No Well         | Bentonite        |
| 5                                        |                  |             |                                   |              |                                                                              | 3.5-4.0° O     | live gray, fine sand and                           | d silt.                                                                     |                | No Well         |                  |
| 6                                        |                  |             |                                   |              |                                                                              | i              |                                                    |                                                                             |                |                 | Filter Sand      |
| 7                                        |                  |             |                                   |              |                                                                              | ı              |                                                    |                                                                             |                |                 | EAM              |
| 8                                        |                  | 8-          | -12                               |              | 4.0                                                                          |                | y, fine sand with some<br>live gray, same as abo   |                                                                             | 3.0            |                 | Riser            |
| 9                                        |                  |             |                                   |              |                                                                              | 3.0-3.5° G1    | ray, fine sand with son<br>ight brown, gravel with | ne medium si                                                                | lt.            |                 |                  |
| 10                                       |                  |             |                                   |              |                                                                              |                | nd fine sand.                                      | i some                                                                      |                |                 | Screen           |
| 11                                       |                  |             |                                   |              |                                                                              |                |                                                    |                                                                             |                |                 |                  |
| 12                                       |                  |             |                                   |              |                                                                              | •              |                                                    |                                                                             |                |                 | Water Level      |
| 13                                       |                  |             |                                   |              |                                                                              | ı.             |                                                    |                                                                             |                |                 |                  |
| 14                                       |                  |             |                                   |              |                                                                              | •              |                                                    |                                                                             |                |                 |                  |
| 15                                       |                  |             |                                   |              |                                                                              |                |                                                    |                                                                             |                |                 |                  |
| 16                                       |                  |             |                                   |              |                                                                              | r              |                                                    |                                                                             |                |                 |                  |
| 17                                       |                  |             |                                   |              |                                                                              | i              |                                                    |                                                                             |                |                 |                  |
| 18                                       |                  |             |                                   |              |                                                                              | ľ              |                                                    |                                                                             |                |                 |                  |
| 19                                       |                  |             |                                   |              |                                                                              |                |                                                    |                                                                             |                |                 |                  |
| 20                                       |                  |             |                                   |              |                                                                              | i              |                                                    |                                                                             |                |                 |                  |
| 21                                       |                  |             |                                   |              |                                                                              | i              |                                                    |                                                                             |                |                 |                  |
| 22                                       |                  |             |                                   |              |                                                                              | ľ              |                                                    |                                                                             |                |                 |                  |
| 23                                       |                  |             |                                   |              |                                                                              |                |                                                    |                                                                             |                |                 |                  |
| PROPOR<br>AND<br>SOME<br>LITTLE<br>TRACE | 10-20            | %<br>%<br>% | <2<br>2-4<br>4-8<br>8-15<br>15-30 | 0            | UNT (COHES<br>VERY SOFT<br>SOFT<br>MEDIUM STI<br>STIFF<br>VERY STIFF<br>HARD | FF             | 0-4<br>4-10<br>10-30<br>30-50                      | JNT (GRANULAR<br>/ERY LOOSE<br>LOOSE<br>MEDIUM DENSE<br>DENSE<br>/ERY DENSE | SOILS)         | Notes:          |                  |

|                                          | -         |             |                                   |                  |                                                                              |                | В       | ORING / W                                 |                                                                            |                |                       | <b>SB-16/MW-16</b> |
|------------------------------------------|-----------|-------------|-----------------------------------|------------------|------------------------------------------------------------------------------|----------------|---------|-------------------------------------------|----------------------------------------------------------------------------|----------------|-----------------------|--------------------|
|                                          |           |             |                                   |                  |                                                                              |                |         |                                           | SITE NAME:                                                                 | Northern 1     | Petroleum-52          | 1 Bay Street       |
|                                          |           | 1           |                                   |                  |                                                                              |                |         | Siti                                      | E LOCATION:                                                                | 521 Bay St     | reet, St. John        | nsbury, Vermont    |
| 00.14                                    |           |             |                                   | 0.4              | (000) 40                                                                     | 1.4500         |         | INSTALL                                   | ATION DATE:                                                                | 18 July 20     | 05                    |                    |
| 63 MILLE<br>RICHMON                      |           |             |                                   |                  | (802) 43<br>434-607                                                          |                |         | Jo                                        | OB NUMBER:                                                                 | 08-204262      | .00                   |                    |
|                                          | ELL DEP   |             | 12'                               | 1 (002)          |                                                                              | NG DEPTH:      | 12      | ,                                         | ECS REP                                                                    | RESENTATIVE:   |                       | rd, Matt Guerino   |
|                                          |           |             |                                   | RILLING):        | 5'                                                                           |                |         |                                           |                                                                            | IG COMPANY:    | ECS Agawa             |                    |
| SCREEN                                   | DIAMET    | ER.         | 1-inc                             | h                |                                                                              | <i>D</i> ЕРТН: | 2-      | 12 ft bgs                                 |                                                                            | BORING TYPE    | Geoprobe d            |                    |
| SCREEN                                   | TYPE/Si   | IZE:        | 0.010                             | ) slot sche      | dule 40                                                                      | PVC            |         | 3                                         | Sampli                                                                     | NG METHOD:     | Disposable            | •                  |
|                                          | DIAMET    |             | 1-inc                             |                  |                                                                              | <i>D</i> ЕРТН: | 0-2     | 2 ft bgs                                  |                                                                            | CE POINT (RP): | Grade                 |                    |
| RISER                                    | TYPE/Si   |             | Sche                              | dule 40 P        | VC                                                                           |                |         |                                           | ELEVA                                                                      | ATION OF RP:   | Not measur            | ed                 |
|                                          | REMAR     | eKS:        |                                   |                  |                                                                              |                |         |                                           |                                                                            | •              |                       |                    |
| DEPTH<br>(IN FEET)                       | SAMPLE ID | SAMPLE      | <b>ДЕРТН</b> (FT)                 | BLOWS<br>/6"     | RECOVERY<br>(FEET)                                                           | S              | SAM     | PLE DESCRIPT<br>AND NOTES                 | ΓΙΟΝ                                                                       | PID<br>(PPM)   | WELL<br>PROFILE       | LEGEND             |
| 0                                        |           | 0           | -4                                |                  | 4.0                                                                          |                |         | rse sand with some r                      | nedium sand,                                                               | 5.3            |                       | Concrete           |
| 1                                        |           |             |                                   |                  |                                                                              |                | ht br   | own, same as above                        |                                                                            |                |                       | $\boxtimes$        |
| 2                                        |           |             |                                   |                  |                                                                              |                |         | aining, same as above ne sand with some n |                                                                            | g. 33          | <b></b> ₩ <b>=</b> ₩  | Native Material    |
| 2                                        |           |             |                                   |                  |                                                                              | dry.           | ıy, III | ie sand with some ii                      | icuium sanu,                                                               | 33             | <b>⋙≡</b> ⋙           |                    |
| 3                                        |           |             | 0                                 |                  | 2.0                                                                          | 0.1.02.0       | ۳.      | 1 - 1/1                                   | 1:                                                                         |                | ⋘⋿⋘                   |                    |
| 4                                        |           | 4           | -8 <b>_</b>                       |                  | 3.0                                                                          | sand, dr       |         | ne sand with some                         | meaium                                                                     |                | <b>⋙≡</b> ⋙           | Bentonite          |
| 5                                        |           |             |                                   |                  |                                                                              | 1.0-3.0 Gra    | ay, s   | ame as above, we                          |                                                                            | 53             | ⋘⋿⋙                   |                    |
| 6                                        |           |             |                                   |                  |                                                                              | through        | out, I  | PID at water table                        |                                                                            |                | ⋘≣⋘                   | Filter Sand        |
| 7                                        |           |             |                                   |                  |                                                                              |                |         |                                           |                                                                            |                |                       |                    |
| 8                                        |           | 8-          | -12                               |                  | 4.0                                                                          |                | y fin   | e sand with some                          | medium sand                                                                | i, 45          | <b>⋙■</b> ⋙           | Riser              |
| 9                                        |           |             |                                   |                  |                                                                              |                |         | brown, fine sand v                        | vith some                                                                  |                |                       |                    |
| 10                                       |           |             |                                   |                  |                                                                              | medium sa      |         | brown, coarse san                         | d and gravel.                                                              |                | <b>⋙≡</b> ⋙           | Screen             |
| 11                                       |           |             |                                   |                  |                                                                              |                |         | t 8' and 12'.                             |                                                                            | 7              | <b>⋙■</b> ⋙           |                    |
| 12                                       |           |             |                                   |                  |                                                                              |                |         |                                           |                                                                            |                | 3000 <del></del> 3000 | <b>▼</b> Water     |
| 13                                       |           |             |                                   |                  |                                                                              |                |         |                                           |                                                                            |                |                       | Level              |
| 14                                       |           |             |                                   |                  |                                                                              |                |         |                                           |                                                                            |                |                       |                    |
| 15                                       |           |             |                                   |                  |                                                                              |                |         |                                           |                                                                            |                |                       |                    |
| 16                                       |           |             |                                   |                  |                                                                              |                |         |                                           |                                                                            |                |                       |                    |
| 17                                       |           |             |                                   |                  |                                                                              |                |         |                                           |                                                                            |                |                       |                    |
| 18                                       |           |             |                                   |                  |                                                                              |                |         |                                           |                                                                            |                |                       |                    |
| 19                                       |           |             |                                   |                  |                                                                              |                |         |                                           |                                                                            |                |                       |                    |
| 20                                       |           |             |                                   |                  |                                                                              |                |         |                                           |                                                                            |                |                       |                    |
| 21                                       |           |             |                                   |                  |                                                                              |                |         |                                           |                                                                            |                |                       |                    |
| 22                                       |           |             |                                   |                  |                                                                              |                |         |                                           |                                                                            |                |                       |                    |
| 23                                       |           |             |                                   |                  |                                                                              |                |         |                                           |                                                                            |                |                       |                    |
| PROPOR<br>AND<br>SOME<br>LITTLE<br>TRACE | 10-20     | %<br>%<br>% | <2<br>2-4<br>4-8<br>8-15<br>15-30 | \<br>{<br>}<br>} | JNT (COHES<br>/ERY SOFT<br>SOFT<br>MEDIUM STI<br>STIFF<br>/ERY STIFF<br>HARD | ŕ              |         | 0-4<br>4-10<br>10-30<br>30-50             | NT (GRANULAR<br>VERY LOOSE<br>LOOSE<br>MEDIUM DENSE<br>DENSE<br>VERY DENSE | SOILS)         | Notes:                |                    |

|                                          |              |                                          |                  |                                                                              |                      | BORING                                  | / W        | ELL ID                                                                       | EN     | TIFIC            | CATION:         | SB-17/MW-17                                  |
|------------------------------------------|--------------|------------------------------------------|------------------|------------------------------------------------------------------------------|----------------------|-----------------------------------------|------------|------------------------------------------------------------------------------|--------|------------------|-----------------|----------------------------------------------|
| 1                                        |              |                                          |                  |                                                                              |                      |                                         |            | SITE NAME:                                                                   |        |                  |                 | 1 Bay Street                                 |
| V.                                       |              |                                          |                  |                                                                              |                      |                                         | Siti       | E LOCATION:                                                                  |        |                  |                 | ısbury, Vermont                              |
|                                          |              |                                          |                  |                                                                              |                      | In                                      | STALL      | ATION DATE:                                                                  |        | July 200         |                 | <i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|                                          | ET STREET, S |                                          |                  | (802) 43                                                                     |                      |                                         |            | OB NUMBER:                                                                   |        | 204262.          |                 |                                              |
|                                          | ND, VERMON'  | 105477                                   | (802)            | 434-607                                                                      | O - FAX<br>NG DEPTH: | 12'                                     |            | ECS REPR                                                                     |        |                  |                 | ud Matt Cuarina                              |
|                                          | TO WATER (DE |                                          | LING) ·          | 5'                                                                           | NG DEPTH.            | 12                                      |            | DRILLIN                                                                      |        |                  | ECS Agawa       | rd, Matt Guerino                             |
|                                          | DIAMETER:    | 1-inch                                   | LINO).           | 3                                                                            | <i>D</i> ЕРТН:       | 2-12 ft bgs                             |            |                                                                              |        | NG TYPE          | Geoprobe d      |                                              |
|                                          | TYPE/SIZE:   |                                          | ot sche          | edule 40                                                                     |                      | 2-12 It bgs                             |            | SAMPLII                                                                      |        |                  | Disposable 1    |                                              |
|                                          | DIAMETER:    | 1-inch                                   | ot sent          | duic 40                                                                      | DEPTH:               | 0-2 ft bgs                              |            | REFERENC                                                                     |        |                  | Grade           | Linei                                        |
|                                          | TYPE/SIZE:   | Schedu                                   | le 40 P          | VC                                                                           |                      | 0 2 10 050                              |            |                                                                              |        | OF RP:           | Not measur      | ed                                           |
|                                          | REMARKS:     |                                          |                  |                                                                              |                      |                                         |            |                                                                              |        |                  |                 |                                              |
| DEРТН<br>(IN FEET)                       | SAMPLE ID    | SAMPLE<br>DEPTH (FT)                     | BLO<br>WS/6      | RECOVERY (FEET)                                                              | S                    | SAMPLE DESC<br>AND NO                   |            | TION                                                                         |        | PID<br>(PPM<br>) | WELL<br>PROFILE | LEGEND                                       |
| 0                                        |              | 0-4                                      |                  | 3.0                                                                          |                      | brown, medium sa                        | and wi     | th some coarse                                                               |        |                  |                 | Concrete                                     |
|                                          |              |                                          |                  |                                                                              |                      | odor throughout.<br>ck staining, medius | m to fi    | ne sand PID                                                                  |        | 0.5              |                 | $\boxtimes$                                  |
| 1                                        | CD17 0.53    |                                          |                  |                                                                              | reading.             | _                                       | 111 10 11  | ne sand, 1 ib                                                                |        | 9.5              | XXXX XXXX       |                                              |
| 2                                        | SB17~2.5'    |                                          |                  |                                                                              | 1.5-2.0' Cen         | nent<br>y, medium to fine               | cand ]     | DID reading                                                                  |        | 321              | ▓≡⋙             | Native Material                              |
| 3                                        |              |                                          |                  |                                                                              |                      | e as above, PID re                      |            | 11D Icaumg.                                                                  |        | 310              | ▓≡⋙             |                                              |
| 4                                        |              | 4-8                                      |                  | 3.0                                                                          |                      | e gray, fine sand                       |            |                                                                              |        | 338              | ⋘⋿⋘             | Bentonite                                    |
| 5                                        | SB17~5.0'    |                                          |                  |                                                                              |                      | een throughout, v                       | vet 1.     | 0' below                                                                     |        |                  | ▓█              |                                              |
|                                          |              |                                          |                  |                                                                              | boring.              |                                         |            |                                                                              |        |                  | ▓≡⋙             | Filton Cond                                  |
| 6                                        |              |                                          |                  |                                                                              |                      |                                         |            |                                                                              |        |                  | ⋘≣⋘             | Filter Sand                                  |
| 7                                        |              |                                          |                  |                                                                              |                      |                                         |            |                                                                              |        |                  | <b>***</b>      |                                              |
| 8                                        |              | 8-12                                     |                  | 4.0                                                                          |                      | y, fine sandn and                       |            |                                                                              | ıg     | 184              | <b>⋙■</b> ⋙     | Riser                                        |
| 9                                        |              |                                          |                  |                                                                              | at 2.5' 3" in odor.  | n length, Sheen t                       | hroug      | shout, strong                                                                |        |                  | <b>⋙■</b> ⋙     |                                              |
| _                                        |              |                                          |                  |                                                                              |                      | ay, coarse sand                         | and g      | ravel.                                                                       |        |                  | ▓█▓             | Screen                                       |
| 10                                       |              |                                          |                  |                                                                              |                      |                                         |            |                                                                              |        |                  | ▓█▓             |                                              |
| 11                                       |              |                                          |                  |                                                                              |                      |                                         |            |                                                                              |        |                  | <b></b> ₩       | Water                                        |
| 12                                       |              |                                          |                  |                                                                              |                      |                                         |            |                                                                              |        |                  |                 | Level                                        |
| 13                                       |              |                                          |                  |                                                                              |                      |                                         |            |                                                                              |        |                  |                 |                                              |
| 14                                       |              |                                          |                  |                                                                              |                      |                                         |            |                                                                              |        |                  |                 |                                              |
| 15                                       |              |                                          |                  |                                                                              |                      |                                         |            |                                                                              |        |                  |                 |                                              |
| 16                                       |              |                                          |                  |                                                                              |                      |                                         |            |                                                                              |        |                  |                 |                                              |
| 17                                       |              |                                          |                  |                                                                              |                      |                                         |            |                                                                              |        |                  |                 |                                              |
| 18                                       |              |                                          |                  |                                                                              |                      |                                         |            |                                                                              |        |                  |                 |                                              |
| 19                                       |              |                                          |                  |                                                                              |                      |                                         |            |                                                                              |        |                  |                 |                                              |
| 20                                       |              |                                          |                  |                                                                              |                      |                                         |            |                                                                              |        |                  |                 |                                              |
| 21                                       |              |                                          |                  |                                                                              |                      |                                         |            |                                                                              |        |                  |                 |                                              |
| 22                                       |              |                                          |                  |                                                                              |                      |                                         |            |                                                                              |        |                  |                 |                                              |
| 23                                       |              |                                          |                  |                                                                              |                      |                                         |            |                                                                              |        |                  |                 |                                              |
| PROPOF<br>AND<br>SOME<br>LITTLE<br>TRACE | E 10-20%     | <2<br>2-4<br>4-8<br>8-15<br>15-30<br>>30 | \<br>6<br>8<br>\ | JNT (COHES<br>/ERY SOFT<br>SOFT<br>MEDIUM STI<br>STIFF<br>/ERY STIFF<br>HARD |                      | 0-4<br>4-10<br>10-30<br>30-50<br>>50    | \<br> <br> | NT (GRANULAR S<br>VERY LOOSE<br>LOOSE<br>MEDIUM DENSE<br>DENSE<br>VERY DENSE | SOILS) |                  | Notes:          |                                              |

|                    |                                 |                                                  |                 |                                    |                |         | / -                                         |                                      | _    |              |                 |                    |
|--------------------|---------------------------------|--------------------------------------------------|-----------------|------------------------------------|----------------|---------|---------------------------------------------|--------------------------------------|------|--------------|-----------------|--------------------|
|                    |                                 |                                                  |                 |                                    |                | В       | <u>ORING / V</u>                            |                                      |      |              |                 | <b>SB-18/MW-18</b> |
| 4                  |                                 |                                                  |                 |                                    |                |         |                                             | SITE NAME:                           |      | Northern I   | Petroleum-52    | 21 Bay Street      |
|                    |                                 |                                                  |                 |                                    |                |         | SIT                                         | TE LOCATION:                         | 5    | 521 Bay St   | reet, St. Johr  | nsbury, Vermont    |
| CO N4:: - =        | 0=====                          | 2,                                               |                 | (000) 45                           | 14.4500        |         | INSTALI                                     | ATION DATE:                          | 1    | 18 July 200  | )5              |                    |
|                    | ET STREET, S<br>ND, VERMON      |                                                  |                 | (802) 43<br>434-607                |                |         |                                             | OB NUMBER:                           | (    | 08-204262.   | 00              |                    |
|                    | ELL DEPTH:                      | 12'                                              | (002)           |                                    | ING DEPTH:     | 12      | ,                                           | ECS REF                              | PRES | SENTATIVE:   | Kim Locka       | rd, Matt Guerino   |
| DEPTH              | TO WATER (DI                    | URING DRII                                       | LING):          | 5'                                 |                |         |                                             | DRILLI                               | ING  | COMPANY:     | ECS Agawa       |                    |
| SCREEN             | DIAMETER:                       | 1-inch                                           |                 |                                    | <i>D</i> ЕРТН: | 2-      | 12 ft bgs                                   |                                      | ВС   | ORING TYPE   | Geoprobe d      | irect-push         |
|                    | N TYPE/SIZE:                    |                                                  | lot sche        | dule 40                            |                |         |                                             |                                      |      | G METHOD:    | Disposable      | Liner              |
|                    | R DIAMETER:                     | 1-inch                                           |                 |                                    | <i>D</i> ЕРТН: | 0-2     | 2 ft bgs                                    |                                      |      | POINT (RP):  | Grade           |                    |
| RISER              | R TYPE/SIZE:                    |                                                  | <u>ile 40 P</u> |                                    | 1 '11'         | 10:     | 21 102                                      | ELEV                                 | VATI | ION OF RP:   | Not measur      | ed                 |
|                    | REMARKS:                        | Fresh st                                         | taining a       | iround d                           | drilling area  | 1 IO    | by 10'.                                     |                                      |      | 1 1          |                 | Г                  |
| DEPTH<br>(IN FEET) | SAMPLE ID                       | SAMPLE<br>DEPTH (FT)                             | BLO<br>WS/6     | RECOVERY<br>(FEET)                 | \$             | SAM     | IPLE DESCRIF<br>AND NOTES                   | TION                                 |      | PID<br>(PPM) | WELL<br>PROFILE | LEGEND             |
| 0                  |                                 | 0-4                                              |                 | 3.0                                |                |         | dium sand with so                           |                                      | nd,  |              |                 | Concrete           |
| 1                  |                                 |                                                  |                 | +                                  |                |         | ling, strong odor the<br>brown, same as abo |                                      | ing  | 585          |                 | $\boxtimes$        |
|                    |                                 | <del>                                     </del> |                 | -                                  |                |         | rown, same as abo                           |                                      |      |              | <b>***</b>      | Native Material    |
| 2                  |                                 |                                                  |                 |                                    |                |         |                                             |                                      |      |              | ▓▆▓             | Native iviatorial  |
| 3                  |                                 |                                                  |                 |                                    |                |         |                                             |                                      |      | 543          | <b>⋙≡</b> ⋙     |                    |
| 4                  | SB18~4.0'                       | 4-8                                              |                 | 3.0                                |                |         | ne sand with silt,                          |                                      |      |              | <b>₩≡</b> ₩     | Bentonite          |
| 5                  |                                 |                                                  |                 | + 1                                | through        |         | n below water lev                           | el, strong ou                        | .01  |              | ▓▆              |                    |
| 6                  | SB18~6.0'                       |                                                  |                 | +                                  | <b></b> 00     | J 44 2. |                                             |                                      |      |              | <b>⋙■</b> ⋙     | Filter Sand        |
| _                  |                                 |                                                  |                 | $\perp$                            |                |         |                                             |                                      |      |              | <b>⋙■</b> ⋙     | $\boxtimes$        |
| 7                  |                                 |                                                  |                 |                                    |                |         |                                             |                                      |      |              |                 |                    |
| 8                  |                                 | 8-12                                             |                 | 3.0                                | 0-2.5' Gray    |         | nd with some silt,                          | strong odor                          |      | 207          | ▓▇▓             | Riser              |
| 9                  |                                 |                                                  |                 |                                    |                |         | nedium sand with                            | some grave                           | 1.   |              |                 |                    |
| 10                 |                                 |                                                  |                 | + +                                |                | -       |                                             | Č                                    |      |              | ▓█▓             | Screen             |
|                    |                                 |                                                  |                 | +                                  | }              |         |                                             |                                      |      |              |                 |                    |
| 11                 |                                 | <b></b>                                          |                 | $\downarrow \longrightarrow$       |                |         |                                             |                                      |      | 1            | <b>⋙≡</b> ₩     | <b>▼</b> Water     |
| 12                 |                                 |                                                  |                 |                                    |                |         |                                             |                                      |      |              |                 | ▼ Water<br>Level   |
| 13                 |                                 |                                                  |                 |                                    |                |         |                                             |                                      |      |              |                 |                    |
| 14                 |                                 |                                                  |                 |                                    |                |         |                                             |                                      |      |              |                 |                    |
| 15                 |                                 |                                                  |                 |                                    | j              |         |                                             |                                      |      |              |                 |                    |
| 16                 |                                 |                                                  |                 |                                    |                |         |                                             |                                      |      |              |                 |                    |
| 17                 |                                 |                                                  |                 |                                    |                |         |                                             |                                      |      |              |                 |                    |
| 18                 |                                 |                                                  |                 | +                                  |                |         |                                             |                                      |      |              |                 |                    |
| 19                 |                                 |                                                  |                 | +                                  |                |         |                                             |                                      |      |              |                 |                    |
| 20                 |                                 |                                                  |                 |                                    |                |         |                                             |                                      |      |              |                 |                    |
| 21                 |                                 |                                                  |                 |                                    |                |         |                                             |                                      |      |              |                 |                    |
| 22                 |                                 |                                                  |                 |                                    |                |         |                                             |                                      |      |              |                 |                    |
| 23                 |                                 |                                                  |                 |                                    |                |         |                                             |                                      |      |              |                 |                    |
|                    | RTIONS USED<br>33-50%<br>20-33% | <2<br>2-4                                        | V               | JNT (COHES<br>ERY SOFT             | SIVE SOILS)    |         | BLOW CO<br>0-4<br>4-10                      | JNT (GRANULAR<br>VERY LOOSE<br>LOOSE | R SO | DILS)        | Notes:          |                    |
| LITTLE             | E 10-20%                        | 4-8<br>8-15<br>15-30                             | M<br>S<br>V     | MEDIUM STII<br>STIFF<br>MERY STIFF |                |         | 10-30<br>30-50<br>>50                       | MEDIUM DENSE<br>DENSE<br>VERY DENSE  | E    |              |                 |                    |

|                                | The same                |             |                                   |              |                                                                |                          | BORING / W                          | /ELL ID                                                    | ENTIFIC        | ATIC       | N·S  | SB-19/MW-19      |
|--------------------------------|-------------------------|-------------|-----------------------------------|--------------|----------------------------------------------------------------|--------------------------|-------------------------------------|------------------------------------------------------------|----------------|------------|------|------------------|
|                                |                         |             |                                   |              | -                                                              |                          | DOMING / V                          | SITE NAME:                                                 |                |            |      | 1 Bay Street     |
| V                              |                         |             |                                   |              |                                                                |                          | SIT                                 | E LOCATION:                                                |                |            |      | sbury, Vermont   |
|                                |                         |             |                                   |              |                                                                |                          |                                     | ATION DATE:                                                | 18 July 200    |            | -    |                  |
| 63 MILLE                       |                         |             |                                   |              | (802) 43                                                       |                          |                                     | OB NUMBER:                                                 | 08-204262.     |            |      |                  |
| RICHMON                        | ND, VER<br>ELL DEP      |             | 0547                              | 7 (802)      | 434-607                                                        | O - FAX<br>NG DEPTH:     | 12'                                 |                                                            | PRESENTATIVE:  |            | ocka | rd, Matt Guerino |
|                                |                         |             | IRING D                           | PRILLING):   | 5'                                                             | NO DEI III.              | 12                                  |                                                            | ING COMPANY:   | ECS A      |      |                  |
| SCREEN                         |                         |             |                                   |              |                                                                | <i>DEPTH:</i>            |                                     |                                                            | BORING TYPE    |            |      | direct-push      |
| SCREEN                         | TYPE/S                  | IZE:        |                                   |              | I.                                                             |                          |                                     |                                                            | LING METHOD:   |            |      | Liner            |
|                                | DIAMET                  |             |                                   |              |                                                                | <i>D</i> ЕРТН:           |                                     |                                                            | ICE POINT (RP) | :          |      |                  |
| RISER                          | TYPE/S                  |             |                                   |              |                                                                |                          |                                     | ELE                                                        | VATION OF RP:  |            |      |                  |
|                                | REMAR                   | RKS:        |                                   |              |                                                                |                          |                                     |                                                            |                |            |      |                  |
| DEPTH<br>(IN FEET)             | SAMPLE ID               | SAMPLE      | <b>ДЕРТН</b> (FT)                 | BLOWS<br>/6" | RECOVERY (FEET)                                                | \$                       | SAMPLE DESCRIP<br>AND NOTES         | TION                                                       | PID<br>(PPM)   | WE<br>PROF |      | LEGEND           |
| 0                              |                         | 0           | -4                                |              | 3.0                                                            |                          | nt brown, medium san                | d with some                                                |                |            |      | Concrete         |
| 1                              |                         |             |                                   |              |                                                                | coarse sa<br>Black stair | and, dry.<br>ning, same as above, o | dor. drv. PID                                              |                |            |      | $\boxtimes$      |
| 2                              |                         |             |                                   |              |                                                                | reading.                 | 8,                                  | ,,,                                                        | 23             | ▓■         |      | Native Material  |
| 3                              |                         |             |                                   |              |                                                                |                          |                                     |                                                            |                | ▓█         |      |                  |
| 4                              |                         | 4           | -8_                               |              | 3.0                                                            |                          | ck to dark gray, fine sa            |                                                            |                | ▒≣         |      | Bentonite        |
| 5                              |                         |             |                                   |              |                                                                |                          | below boring, PID reavater level.   | ding below                                                 |                |            |      |                  |
| 6                              |                         |             |                                   |              |                                                                | Broaman                  |                                     |                                                            | 279            |            |      | Filter Sand      |
| 7                              |                         |             |                                   |              |                                                                |                          |                                     |                                                            |                |            |      | <u> 100.03</u>   |
| 8                              |                         | 8-          | -12                               |              | 3.0                                                            | 0-2.5' Gray              | y, fine sand and silt, st           | rong odor                                                  | 472            | ▓■         |      | Riser            |
| 9                              |                         |             |                                   |              |                                                                |                          | i.<br>ght brown, gravel with        | medium san                                                 | d.             |            |      |                  |
| 10                             |                         |             |                                   |              |                                                                |                          |                                     |                                                            |                | ▓▋         |      | Screen           |
| 11                             |                         |             |                                   |              |                                                                |                          |                                     |                                                            |                | ₩₩         |      |                  |
| 12                             |                         |             |                                   |              |                                                                |                          |                                     |                                                            |                |            |      | Water<br>Level   |
| 13                             |                         |             |                                   |              |                                                                |                          |                                     |                                                            |                |            |      |                  |
| 14                             |                         |             |                                   |              |                                                                |                          |                                     |                                                            |                |            |      |                  |
| 15                             |                         |             |                                   |              |                                                                |                          |                                     |                                                            |                | 1          |      |                  |
| 16                             |                         |             |                                   |              |                                                                |                          |                                     |                                                            |                |            |      |                  |
| 17                             |                         |             |                                   |              |                                                                |                          |                                     |                                                            |                |            |      |                  |
| 18                             |                         |             |                                   |              |                                                                |                          |                                     |                                                            |                |            |      |                  |
| 19                             |                         |             |                                   |              |                                                                |                          |                                     |                                                            |                | 1          |      |                  |
| 20 21                          |                         |             |                                   |              |                                                                |                          |                                     |                                                            |                |            |      |                  |
| 21 22                          |                         |             |                                   |              |                                                                |                          |                                     |                                                            |                |            |      |                  |
| 23                             |                         |             |                                   |              |                                                                |                          |                                     |                                                            |                |            |      |                  |
| _                              | RTIONS U                | SED         |                                   | BLOW CO      | UNT (COHES                                                     | SIVE SOILS)              | RI OW COI                           | JNT (GRANULAR                                              | SOILS)         | Notes:     |      |                  |
| AND<br>SOME<br>LITTLE<br>TRACE | 33-50<br>20-33<br>10-20 | %<br>%<br>% | <2<br>2-4<br>4-8<br>8-15<br>15-30 | 0            | VERY SOFT<br>SOFT<br>MEDIUM STI<br>STIFF<br>VERY STIFF<br>HARD | FF                       | 0-4<br>4-10<br>10-30<br>30-50       | VERY LOOSE<br>LOOSE<br>MEDIUM DENSE<br>DENSE<br>VERY DENSE | , GOILG)       | notes.     |      |                  |

|                                         |                   |                |                                  |                                   |                                                                |                | D 0 D D 1 0 / 11                  |                                                                             |                 |                 | ~= ••            |
|-----------------------------------------|-------------------|----------------|----------------------------------|-----------------------------------|----------------------------------------------------------------|----------------|-----------------------------------|-----------------------------------------------------------------------------|-----------------|-----------------|------------------|
|                                         | 1                 |                |                                  |                                   |                                                                |                | BORING / W                        |                                                                             | ENTIFIC         | ATION:          | SB-20            |
| (                                       | 1                 |                |                                  |                                   |                                                                |                |                                   | SITE NAME:                                                                  | Northern P      | etroleum-521    | 1 Bay Street     |
|                                         |                   | 1              |                                  |                                   |                                                                |                | Siti                              | E LOCATION:                                                                 | 521 Bay Str     | eet, St. John   | sbury, Vermont   |
| G2 Muur                                 | CTD               | (              | LUTE 2                           | 01                                | (002) 43                                                       | 4 4500         | INSTALLA                          | ATION DATE:                                                                 | 18 July 200     | 5               |                  |
| 63 MILLE<br>RICHMON                     |                   |                |                                  |                                   | (802) 43<br>34-607                                             |                | Jo                                | OB NUMBER:                                                                  | 08-204262.0     | 00              |                  |
|                                         | ELL DEF           |                |                                  | (882)                             |                                                                | NG DEPTH:      | 12'                               | ECS REA                                                                     | PRESENTATIVE:   | Kim Locka       | rd, Matt Guerino |
| DEPTH                                   | TO WAT            | ER (DU         | JRING D                          | PRILLING):                        | 4'                                                             |                |                                   | Drill                                                                       | NG COMPANY:     | ECS Agawa       |                  |
| SCREEN                                  | DIAMET            | TER:           |                                  |                                   |                                                                | <i>D</i> ЕРТН: |                                   |                                                                             | BORING TYPE     | Geoprobe o      | lirect-push      |
|                                         | TYPE/S            |                |                                  |                                   |                                                                |                |                                   |                                                                             | LING METHOD:    | Disposable      | Liner            |
|                                         | DIAMET            |                |                                  |                                   |                                                                | <i>DEPTH:</i>  |                                   |                                                                             | ICE POINT (RP): |                 |                  |
| RISER                                   | R TYPE/S<br>REMAI |                |                                  |                                   |                                                                |                |                                   | ELE                                                                         | VATION OF RP:   |                 |                  |
|                                         | KEMAI             | KKS.           |                                  |                                   |                                                                |                |                                   |                                                                             |                 |                 |                  |
| DEРТН<br>(IN FEET)                      | SAMPLE ID         | AMPLE          | ЕРТН (FT)                        | BLOWS<br>/6"                      | RECOVERY (FEET)                                                | 5              | SAMPLE DESCRIPT AND NOTES         | TION                                                                        | PID<br>(PPM)    | WELL<br>PROFILE | LEGEND           |
|                                         | SAI               | S              | DE                               |                                   | RE(                                                            |                |                                   |                                                                             | , ,             |                 |                  |
| 0                                       |                   | (              | )-4                              |                                   | 3.0                                                            |                | m SAND, little grave              |                                                                             | 6.7             |                 | Concrete         |
| 1                                       |                   |                |                                  |                                   |                                                                | orders. 6      | 6' – layer of black stair @ 1.5'. | ied soils with                                                              |                 |                 | $\boxtimes$      |
| 2                                       |                   |                |                                  |                                   |                                                                | J              |                                   |                                                                             |                 |                 | Native Material  |
| 3                                       |                   |                |                                  |                                   |                                                                |                |                                   |                                                                             |                 |                 |                  |
| 4                                       |                   | 4              | Ť                                |                                   | 4.0                                                            | SAND;          |                                   |                                                                             | 6.3             | No Well         | Bentonite        |
| 5                                       |                   |                |                                  |                                   |                                                                | Bottom 1 -     | - f SAND, trace silt;             | slight odor                                                                 |                 | 140 Well        | Eile G 1         |
| 6                                       |                   |                |                                  |                                   |                                                                |                |                                   |                                                                             |                 |                 | Filter Sand      |
| 7                                       |                   |                |                                  |                                   |                                                                |                |                                   |                                                                             |                 |                 | 5.45             |
| 8                                       |                   | 8              | -12                              |                                   | 3.0                                                            |                | as above.<br>t – c SAND and GRA   | VEL; PID @                                                                  |                 |                 | Riser            |
| 9                                       |                   |                |                                  |                                   |                                                                | 11 ft.         |                                   |                                                                             | 5.0             |                 | Screen           |
| 10                                      |                   |                |                                  |                                   |                                                                |                |                                   |                                                                             | 3.0             |                 |                  |
| 11                                      |                   |                |                                  |                                   |                                                                |                |                                   |                                                                             |                 |                 | <b>▼</b> Water   |
| 13                                      |                   |                |                                  |                                   |                                                                |                |                                   |                                                                             |                 |                 | Level            |
| 14                                      |                   |                |                                  |                                   |                                                                |                |                                   |                                                                             |                 |                 |                  |
| 15                                      |                   |                |                                  |                                   |                                                                |                |                                   |                                                                             |                 |                 |                  |
| 16                                      |                   |                |                                  |                                   |                                                                |                |                                   |                                                                             |                 |                 |                  |
| 17                                      |                   |                |                                  |                                   |                                                                |                |                                   |                                                                             |                 |                 |                  |
| 18                                      |                   |                |                                  |                                   |                                                                |                |                                   |                                                                             |                 |                 |                  |
| 19                                      |                   |                |                                  |                                   |                                                                |                |                                   |                                                                             |                 |                 |                  |
| 20                                      |                   |                |                                  |                                   |                                                                |                |                                   |                                                                             |                 |                 |                  |
| 21                                      |                   |                |                                  |                                   |                                                                |                |                                   |                                                                             |                 |                 |                  |
| 22                                      |                   |                |                                  |                                   |                                                                |                |                                   |                                                                             |                 |                 |                  |
| 23                                      |                   |                |                                  |                                   |                                                                |                |                                   |                                                                             |                 |                 |                  |
| PROPOI<br>AND<br>SOME<br>LITTLI<br>TRAC | E 10-20           | )%<br>3%<br>)% | <2<br>2-4<br>4-8<br>8-15<br>15-3 | S0<br>M<br>S <sup>-</sup><br>0 VI | NT (COHES<br>ERY SOFT<br>OFT<br>EDIUM STI<br>TIFF<br>ERY STIFF | ,              | 0-4<br>4-10<br>10-30<br>30-50     | JNT (GRANULAR<br>VERY LOOSE<br>LOOSE<br>MEDIUM DENSE<br>DENSE<br>VERY DENSE | SOĪLS)          | Notes:          |                  |

|                                          | 1                 |             |                                   |              |                                                                              |                | BORING / W                                         | ELL ID                                                                      | ENTIFIC                         | CATION:         | SB-21            |
|------------------------------------------|-------------------|-------------|-----------------------------------|--------------|------------------------------------------------------------------------------|----------------|----------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------|-----------------|------------------|
| 4                                        | L.,               |             |                                   |              |                                                                              |                |                                                    | SITE NAME:                                                                  | Northern I                      | Petroleum-52    | 1 Bay Street     |
|                                          |                   |             |                                   |              |                                                                              |                | Site                                               | E LOCATION:                                                                 | 521 Bay St                      | reet, St. John  | sbury, Vermont   |
| 62 Muus                                  | T CTDE            | ET C        |                                   | 01           | (902) 43                                                                     | 4 4500         | INSTALLA                                           | ITION DATE:                                                                 | 18 July 200                     | )5              |                  |
| 63 MILLE<br>RICHMON                      |                   |             |                                   |              | (802) 43<br>434-607                                                          |                | Jo                                                 | OB NUMBER:                                                                  | 08-204262.                      | 00              |                  |
|                                          | ELL DEP           |             |                                   |              |                                                                              | ING DEPTH:     | 12'                                                |                                                                             | PRESENTATIVE:                   | Kim Locka       | rd, Matt Guerino |
|                                          |                   |             | IRING D                           | PRILLING):   | 5'                                                                           |                |                                                    | Drilli                                                                      | ING COMPANY:                    | ECS Agaw        |                  |
| SCREEN                                   |                   |             |                                   |              | <u> </u>                                                                     | <i>DEPTH:</i>  |                                                    |                                                                             | BORING TYPE                     | Geoprobe        |                  |
|                                          | TYPE/Si           |             |                                   |              | T                                                                            | Depart         |                                                    |                                                                             | LING METHOD:                    | Disposable      | Liner            |
|                                          | DIAMET<br>TYPE/SI |             |                                   |              |                                                                              | <i>D</i> ЕРТН: |                                                    |                                                                             | ICE POINT (RP)<br>VATION OF RP: | ·               |                  |
| KISEK                                    | REMAR             |             |                                   |              |                                                                              |                |                                                    | ELE                                                                         | ATION OF KI.                    |                 |                  |
|                                          |                   |             |                                   |              |                                                                              |                |                                                    |                                                                             |                                 |                 |                  |
| DEPTH<br>(IN FEET)                       | SAMPLE ID         | SAMPLE      | <b>ДЕРТН (FT)</b>                 | BLOWS<br>/6" | RECOVERY (FEET)                                                              | 5              | SAMPLE DESCRIP <sup>*</sup><br>AND NOTES           | ΓΙΟΝ                                                                        | PID<br>(PPM)                    | WELL<br>PROFILE | LEGEND           |
| 0                                        |                   | 0           | -4                                |              | 3.0                                                                          | 0-1.0' Ligh    | ht brown, medium sand                              | d with some                                                                 | 3.0                             |                 | Concrete         |
|                                          |                   |             |                                   |              |                                                                              | fine sand      | d, dry.                                            |                                                                             |                                 |                 | $\boxtimes$      |
| 1                                        |                   |             |                                   |              |                                                                              |                | ark brown, same as aboark brown, medium to         |                                                                             |                                 |                 |                  |
| 2                                        |                   | ı           |                                   |              |                                                                              | and grav       | el, dry.                                           |                                                                             |                                 |                 | Native Material  |
| 3                                        |                   | i l         |                                   |              |                                                                              | 2.5-3.0' Li    | ight brown fine sand ar                            | nd silt, dry.                                                               |                                 |                 |                  |
| 4                                        |                   | 4           | Ť                                 |              | 4.0                                                                          | brown m        | ht brown, fine sand wit<br>nottling bottom 2', wet | 1' below                                                                    | 3.2                             | ,               | Bentonite        |
| 5                                        |                   | <u> </u>    |                                   |              |                                                                              | boring, I      | Brown mottling botton                              |                                                                             |                                 | No Well         |                  |
| 6                                        |                   |             |                                   |              |                                                                              | reading a      | at groundwater level.                              |                                                                             |                                 |                 | Filter Sand      |
| 7                                        |                   |             |                                   |              | $\dagger$                                                                    | İ              |                                                    |                                                                             |                                 |                 | MM               |
| 8                                        |                   | 8-          | -12                               |              | 2.0                                                                          |                | ht brown, fine sand wit                            |                                                                             |                                 | 1               | Riser            |
| 9                                        |                   |             |                                   |              |                                                                              | 1.0-2.0 G      | lay, coarse saire and 51                           | avcı.                                                                       |                                 |                 |                  |
| 10                                       |                   |             |                                   |              |                                                                              | į              |                                                    |                                                                             |                                 |                 | Screen           |
| 11                                       |                   | Ī           |                                   |              |                                                                              | ı              |                                                    |                                                                             |                                 |                 |                  |
| 12                                       |                   |             |                                   |              |                                                                              | ·              |                                                    |                                                                             |                                 | 1               | Water Level      |
| 13                                       |                   | ı <u></u>   |                                   |              |                                                                              | ı              |                                                    |                                                                             |                                 |                 |                  |
| 14                                       |                   |             |                                   |              |                                                                              | l              |                                                    |                                                                             |                                 |                 |                  |
| 15                                       |                   |             |                                   |              |                                                                              | <u> </u>       |                                                    |                                                                             |                                 |                 |                  |
| 16                                       |                   | ı <u></u>   |                                   |              |                                                                              | ı              |                                                    |                                                                             |                                 |                 |                  |
| 17                                       |                   |             |                                   |              |                                                                              | İ              |                                                    |                                                                             |                                 |                 |                  |
| 18                                       |                   |             |                                   |              |                                                                              | İ              |                                                    |                                                                             |                                 |                 |                  |
| 19                                       |                   |             |                                   |              | $\uparrow$                                                                   | l              |                                                    |                                                                             |                                 |                 |                  |
| 20                                       |                   |             |                                   |              | +                                                                            | <u> </u>       |                                                    |                                                                             |                                 | †               |                  |
| 21                                       |                   |             |                                   |              |                                                                              | ı              |                                                    |                                                                             |                                 |                 |                  |
| 22                                       |                   |             |                                   |              |                                                                              | ı              |                                                    |                                                                             |                                 |                 |                  |
| 23                                       |                   |             |                                   |              |                                                                              | ı              |                                                    |                                                                             |                                 |                 |                  |
| PROPOR<br>AND<br>SOME<br>LITTLE<br>TRACE | 10-20             | %<br>%<br>% | <2<br>2-4<br>4-8<br>8-15<br>15-30 | 0            | UNT (COHES<br>VERY SOFT<br>SOFT<br>MEDIUM STI<br>STIFF<br>VERY STIFF<br>HARD | FF             | 0-4<br>4-10<br>10-30<br>30-50                      | INT (GRANULAR<br>/ERY LOOSE<br>.OOSE<br>MEDIUM DENSE<br>DENSE<br>/ERY DENSE | SOILS)                          | Notes:          |                  |

|                                          | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa |                        |                    |                                                                              |                         | BORING / V                                   | VELL ID                                                       | ENTIFICA                           | ATION: S                                      | SB-22/MW-22        |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|------------------------------------------------------------------------------|-------------------------|----------------------------------------------|---------------------------------------------------------------|------------------------------------|-----------------------------------------------|--------------------|
|                                          | E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                    |                                                                              |                         |                                              | SITE NAME:                                                    | Northern Pe                        | troleum-521                                   | Bay Street         |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |                                                                              |                         | SIT                                          | E LOCATION:                                                   | 521 Bay Stre                       | et, St. Johns                                 | bury, Vermont      |
| 63 Mu i r                                | T STDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ET, SUITE 3            | 201                | (802) 43                                                                     | 4 4500                  | Install                                      | ATION DATE:                                                   | 18 July 2005                       |                                               |                    |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MONT 0547              |                    | 434-607                                                                      |                         | Ĵ                                            | OB NUMBER:                                                    | 08-204262.00                       | )                                             |                    |
| W                                        | ELL DEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TH: <b>12'</b>         |                    | BOR                                                                          | NG DEPTH:               | 12'                                          | ECS R                                                         | EPRESENTATIVE:                     | Kim Locka<br>Guerino                          | rd, Matt           |
| <b>D</b> EPTH                            | TO WATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ER (DURING I           | ORILLING):         | 5'                                                                           |                         |                                              | DRIL                                                          | LING COMPANY:                      | ECS Agawa                                     | ım                 |
|                                          | DIAMET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                    |                                                                              | <i>D</i> ЕРТН:          | 2-12ft bgs                                   |                                                               | BORING TYPE                        | Geoprobe d                                    |                    |
|                                          | TYPE/Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 0 slot sche        | dule 40                                                                      |                         | T                                            |                                                               | PLING METHOD:                      | Disposable                                    | Liner              |
|                                          | DIAMET<br>TYPE/SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | ch<br>edule 40 P   | VC                                                                           | <i>D</i> ЕРТН:          | 0-2 ft bgs                                   |                                                               | ENCE POINT (RP):<br>EVATION OF RP: | Grade<br>Not measur                           | hod                |
| KISEK                                    | REMAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70 0111                | duie 40 1          | VC                                                                           |                         |                                              | LL                                                            | EVATION OF ICE.                    | Not illeasur                                  | eu                 |
| DEPTH<br>(IN FEET)                       | SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAMPLE<br>DEPTH (FT)   | BLOWS<br>/6"       | RECOVERY<br>(FEET)                                                           | ξ                       | SAMPLE DESCRIF<br>AND NOTES                  | TION                                                          | PID<br>(PPM)                       | WELL<br>PROFILE                               | LEGEND             |
| 0                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-4                    |                    | 3.0                                                                          |                         | nt brown to gray, med                        | ium sand witl                                                 | h                                  |                                               | Concrete           |
| 1                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |                                                                              |                         | ne sand, dry.<br>lack staining, fine san     | d and silt. drv                                               | 5.2                                |                                               | $\boxtimes$        |
| 2                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |                                                                              |                         | gs taken at 1',2', and                       |                                                               | 13.0                               | <b>∭</b> ■₩                                   | Native Material    |
| 3                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |                                                                              |                         |                                              |                                                               | 9.0                                |                                               |                    |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1_8                    |                    | 3.0                                                                          | 0-3 0' Gray             | y, fine sand with som                        | e cilt wet 1 0                                                | 8.0                                | <b></b>                                       | Be <u>nton</u> ite |
| 4                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-0                    |                    | 3.0                                                                          |                         | oring, sheen below gr                        |                                                               |                                    |                                               | Bentonite          |
| 5                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |                                                                              | level.                  | gs at groundwater lev                        | al and Q'                                                     | 320                                | <b>                                      </b> |                    |
| 6                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |                                                                              | TID ICadiii             | igs at groundwater lev                       | ci and o .                                                    |                                    | ▓█▓                                           | Filter Sand        |
| 7                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |                                                                              |                         |                                              |                                                               | 450                                |                                               |                    |
| 8                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8-12                   |                    | 3.0                                                                          |                         | y, fine sand and silt, s<br>be free product. | heening that                                                  |                                    | ▓█▓                                           | Riser              |
| 9                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |                                                                              | 2.0-3.0' Gr             | ray, coarse sand and s                       | ome gravel                                                    | 250                                |                                               |                    |
| 10                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |                                                                              | with some<br>PID readin | fine sand.  gs at 9.5' and 11'               |                                                               | 475                                |                                               | Screen             |
| 11                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |                                                                              |                         | <i>8</i>                                     |                                                               |                                    |                                               |                    |
| 12                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |                                                                              |                         |                                              |                                                               |                                    |                                               | Water              |
| 13                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |                                                                              |                         |                                              |                                                               |                                    |                                               | Level              |
| 14                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    | +                                                                            |                         |                                              |                                                               |                                    |                                               |                    |
| 15                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 1                  |                                                                              |                         |                                              |                                                               |                                    |                                               |                    |
| 16                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |                                                                              |                         |                                              |                                                               |                                    |                                               |                    |
| 17                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |                                                                              |                         |                                              |                                                               |                                    |                                               |                    |
| 18                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | -                  |                                                                              |                         |                                              |                                                               |                                    |                                               |                    |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    | +                                                                            |                         |                                              |                                                               |                                    |                                               |                    |
| 19                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    | -                                                                            |                         |                                              |                                                               |                                    |                                               |                    |
| 20                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    | 1                                                                            |                         |                                              |                                                               |                                    |                                               |                    |
| 21                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |                                                                              |                         |                                              |                                                               |                                    |                                               |                    |
| 22                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |                                                                              |                         |                                              |                                                               |                                    |                                               |                    |
| 23                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |                                                                              |                         |                                              |                                                               |                                    |                                               |                    |
| PROPOI<br>AND<br>SOME<br>LITTLI<br>TRACI | E 10-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | % <2<br>% 2-4<br>% 4-8 | V<br>S<br>N<br>5 S | JNT (COHES<br>YERY SOFT<br>SOFT<br>MEDIUM STI<br>STIFF<br>YERY STIFF<br>MARD |                         | 0-4<br>4-10<br>10-30<br>30-50<br>>50         | DUNT (GRANULA) VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE | ŕ                                  | Notes:                                        |                    |

# APPENDIX B

FIELD NOTES

H THE FACE THINKS THERE,

Environmental Compliance Services, Inc. 588 Silver Street, Agawam, Massachusetts 01001 MA: (413) 789-3530 FAX: (413) 789-2776

#### WELL SAMPLING LOG

| Client:     | 2        | orther             | n Pet     | releu       | m            |               |        |           |       | Job Numbe       | r:         | 087                  | 20420               | e Z  | <u> </u> | Sheet of                              |
|-------------|----------|--------------------|-----------|-------------|--------------|---------------|--------|-----------|-------|-----------------|------------|----------------------|---------------------|------|----------|---------------------------------------|
| Location:   | 5/       | John               | 15 tous   | V.VT        | , /.         | Bay Sh        | ,      |           |       | -<br>Date:      | 7          | 1291                 | 65                  |      |          |                                       |
| Personnel:  | B        | rian               | Bach      | man         | n/m          | at 76c        | veri'n | 0         |       | -<br>Weather Co | onditions: | Sun                  | ny 75               | VF.  |          | •                                     |
|             |          | Point of           | Total     | Depth to    | Depth to     | Product       | Water  | Volume    |       | PID             | Dissolved  |                      |                     |      |          |                                       |
| Well ID     | D        | Reference          | 1 '       | Product     | Water        | Thickness     | Height | Purged    | Odors | 1 -             | Oxygen     | рН                   | Sp. Cond.           | Temp | Sample   |                                       |
|             |          | (PVC/Rim)          | (feet)    | (feet)      | (feet)       | (feet)        | (feet) | (gallons) | (Y/N) | (ppmv)          | (mg/L)     |                      | (umhos/sec)         | (°C) | Time     | Comments                              |
| MW-22       | ļ        | 0.15               | 11.21     | ND          | 5.56         |               | 5.65   | 1.41      |       |                 |            | <b>_</b>             |                     |      |          | Sheen oder                            |
| MW-S        | ļ        | 0.10               | 10.82     | ND          | 5,75         |               | 5.07   | 2.53      | ļ     | ļ               |            |                      |                     |      | 15:00    |                                       |
| MW-101      |          | 0.10               | 11.40     | CN          | 547          |               | 5.93   | 1.48      |       |                 |            |                      |                     |      | 1450     |                                       |
| MW-IR       | <u> </u> | 0.05               | 12.22     | Ν̈́D        | 567          |               | 6.55   | 1.53      |       |                 |            | ļ                    |                     |      | 1440     |                                       |
| Dup.        | ļ        |                    |           |             | ļ            |               |        | ļ         |       | <u> </u>        |            |                      |                     |      | 1320     |                                       |
|             | <u> </u> |                    |           |             |              | ļ             |        | <u> </u>  |       |                 |            | ļ                    |                     |      |          |                                       |
|             |          | ļ                  |           |             |              |               |        | <u> </u>  |       |                 |            |                      |                     |      |          |                                       |
|             | <u> </u> |                    |           |             |              |               |        |           |       |                 |            | ļ                    |                     |      |          |                                       |
|             | <u> </u> | <u> </u>           |           |             |              |               |        | ļ         |       |                 |            |                      |                     |      |          |                                       |
|             |          |                    |           |             | <u> </u>     |               |        |           |       |                 |            |                      |                     |      |          |                                       |
|             |          |                    |           |             |              |               |        |           |       |                 |            |                      |                     |      |          |                                       |
|             |          |                    |           |             |              |               |        |           |       |                 |            | ٠,                   |                     |      |          |                                       |
|             |          |                    |           |             |              |               |        |           |       |                 |            |                      |                     |      |          |                                       |
| ŀ           | nstru    | mentation          | & Equipme | nt          | Ma           | anufacturer/M | lodel  | I.D.      | Ca    | libration       | `          | Decon                |                     |      | ٠        | Notes                                 |
| Stainless s | teel t   | <del>pailers</del> |           |             |              | NA            |        |           | ~     | -NA             | Alcor      | iox, meth            | anol; <del>DI</del> |      |          |                                       |
| Water Leve  | ol-Ind   | ieator             |           | <del></del> | <del> </del> | -Slope-       |        |           | _     | NA              | 1          | Methanol,            |                     |      |          | · · · · · · · · · · · · · · · · · · · |
| Temp-sens   | l-pH     | meters             |           |             | 1            | Corning       |        | ······    |       |                 | †          | <del>Vethanol,</del> |                     |      |          | ,                                     |
| <u>'</u>    |          |                    |           |             |              |               |        |           |       |                 |            |                      | -                   |      |          |                                       |
|             |          |                    |           |             |              |               |        |           |       |                 |            |                      |                     |      |          |                                       |
| D = Well di | amet     | ter in inche       | s.        |             | 1            |               |        |           | 1     |                 |            |                      |                     |      |          |                                       |
|             |          |                    |           |             |              |               |        |           |       |                 |            |                      |                     |      |          |                                       |
|             |          |                    |           |             |              |               |        |           |       |                 |            |                      |                     |      |          |                                       |
|             |          |                    |           |             |              |               |        |           |       |                 |            |                      |                     |      |          |                                       |
| 1           |          |                    |           |             |              |               |        |           |       |                 |            |                      |                     |      |          |                                       |
|             |          |                    | ا ۽ ا     |             |              |               |        |           |       |                 |            |                      |                     |      |          |                                       |

Environmental Compliance Services, Inc.

588 Silver Street, Agawam, Massachusetts 01001 MA: (413) 789-3530 FAX: (413) 789-2776

### **WELL SAMPLING LOG**

| Client:     |       | 16R714       | FRN F     | ETHOL      | EUM         |                                         |        |           |            | Job Numbe  | r:          | ړے                    | 3-20420       | ,<br>,<br>,                           |        | Sheet of 2                                       |
|-------------|-------|--------------|-----------|------------|-------------|-----------------------------------------|--------|-----------|------------|------------|-------------|-----------------------|---------------|---------------------------------------|--------|--------------------------------------------------|
| _ocation:   |       | 51           | JOHN      | SBURY      | 1           |                                         | ·      |           |            | Date:      | - 7 t       | 29/03                 | <u>-</u>      |                                       |        | _                                                |
| Personnel:  |       | MiG          | UERIN     | 10 & B     | · BACIL     | MAN                                     |        |           |            | Weather Co | onditions:  | SUNA                  | Y 750         | <u> </u>                              |        | <u>-</u>                                         |
|             |       | Point of     | Total     | Depth to   | Depth to    | Product                                 | Water  | Volume    |            | PID        | Dissolved   |                       |               |                                       |        |                                                  |
| Well ID     | D     | Reference    | Depth     | Product    | Water       | Thickness                               | Height | Purged    | ŀ          | Readings   | Oxygen      | pН                    | Sp. Cond.     | Temp                                  | Sample |                                                  |
|             |       | (PVC/Rim)    | (feet)    | (feet)     | (feet)      | (feet)                                  | (feet) | (gallons) |            | (ppmv)     | (mg/L)      |                       | (umhos/sec)   | (°C)                                  | Time   | Comments                                         |
| MW-1        |       | 14.70        | 10.97     | NO         | 5.57        |                                         | 5.40   | 24 15     | 1          |            |             |                       |               |                                       | 1353   |                                                  |
| MW- 26      | \$    | 0.15         | 10.30     | 40         | 5.79        |                                         | 4.49   | 1800      | 6          |            |             |                       | <u> </u>      |                                       | 1400   | Shoon OOOV                                       |
| MW-4        |       | 0.20         | 10.90     | dn         | 5,05        |                                         | 5.85   | 1334      |            |            |             |                       |               |                                       | 1445   |                                                  |
| MWS         |       | DILO         | 10.92     | CA         | 4,91        |                                         | 6.01   | 24(0)     |            |            |             |                       |               |                                       | 1440   | deficial screen                                  |
| MN-7        |       | 2.95 AG\$    | -         | 6.45       | 7.00        | 0.55                                    |        |           |            |            |             |                       |               |                                       | 1105   | PROUT FOUND 1 1/2" sade                          |
| MM-B        |       | 3.40A5       | 17,96     | ND         | 6.60        |                                         | 8.26   | 2.07      |            |            |             |                       |               |                                       | 1430   |                                                  |
| MW-11       |       | 0.15         | りから       | ND         | 3.60        |                                         | 7.70   | 1,80      |            |            |             |                       |               |                                       | 1435   | GREVISHT, SCHEEN, OGOP                           |
| MW-12       |       | 0.15         | 10.32     | T-         | 491         |                                         | 5.41   | 1.32      | 4          |            |             |                       |               | -                                     | 1430   | CHERY SICT, SCHEEN, OBOR                         |
| MW-13       |       | 7.15         | 10.75     | _          | 4.99        |                                         | ₹.३४   | 1.47      |            |            |             |                       |               | · · · · · · · · · · · · · · · · · · · | 1425   | Heavy Sheen, Obor                                |
| MW-16       |       | 0.15         | 11.12     | ND         | 5.42        |                                         | 5.70   | 22        | F          |            |             |                       |               |                                       | 1320   |                                                  |
| MW-17       |       | 0.25         | 11.10     | ND         | 5.55        |                                         | 5.55   | 22        | <b>9</b> 4 |            |             |                       |               |                                       | 11:45  | STEM 6 OPP ON JEP<br>PRODUCT FOUND U.Y "NZAI" BR |
| MW18        |       | 10:05        | 10.88     |            | 5.58        | _                                       | 5,30   | 20.34     |            |            |             |                       |               |                                       | 1335   |                                                  |
| MW-19       |       | 6.15         | 10.90     | <i>V</i> ~ | 5.55        | † · · · · · · · · · · · · · · · · · · · | 5.35   | 2). 13    | 14         | <u> </u>   |             |                       |               |                                       | 125    | Henry Goen ODOR                                  |
|             | nstru |              | & Equipme |            |             | nufacturer/N                            |        | 1.D.      |            | libration  | Ì           | Decon                 |               |                                       |        | Notes                                            |
|             |       |              |           | ailers     |             | NA                                      |        |           |            | NA         | NA Alcor    | ex, meth              | anol, DI      |                                       |        |                                                  |
|             |       |              | linst I   |            |             | Slope                                   |        |           |            | NA-        | 5.6.1       | <del>Vethanel</del> , | DI            |                                       |        | ***************************************          |
|             |       |              |           | Egusp      |             | - <del>Cernin</del> g                   |        |           | -          |            |             | dethanol,             | <del>DI</del> |                                       |        |                                                  |
|             |       |              | J         | <i>V</i>   |             |                                         |        |           |            |            |             |                       |               |                                       |        |                                                  |
|             |       |              |           |            |             |                                         |        |           |            | *          |             |                       |               |                                       |        |                                                  |
| D = Well di | ame   | ter in inche | s.        |            | <del></del> |                                         |        | •         | •          |            | <del></del> |                       |               |                                       |        |                                                  |

A STATE OF THE PARTY.

| 10/19/05 NONTHERN FORENEUM NEATHER:          | 10/14/05 NULTURE HI PETROLEUM - SIXVEY      |
|----------------------------------------------|---------------------------------------------|
| ST. JOHUSBURY, VT MUSTRY GLODY, 50°F         | SET UP #1                                   |
| 08-204262,00                                 | Pener TOP MID BUT \$                        |
| 1005 - MO/BB ONSITE FOR OFFS. TO WELL        | 411-29 8.21 6.68 5.15 0 306                 |
| Souther And Survey.                          | AIL-30 7.67 6.30 4.93 0 274                 |
| TEGN NEW CUNCING SANSEING                    | AW-31 7,59 6.36 5.15 2 244                  |
| WELL ID DIE DIE RIA PLACE TIME LABORES       | MW 37 7.64 6.56 5.50 5 214                  |
| 13.90 6.59 1.75 1335                         | MW 7 7.16 5.81 4.44 7.5 PREVIOUS SURVEY 270 |
| " May 27 14.30 7.03 1.82 1350 RECEIVED 10.71 | Au 8 7.10 5.60 4.10 6 300                   |
| 14.40 6.50 6.77 0.33" B Fr. Fire State       | 5,23 93.5                                   |
| Aw-29 12.00 4.14 1.97 1205 Sheens Herens     | 11 6.76 5.90 500 67                         |
|                                              | MW-1 5.45 4.53 3.63 236 4 MW-29 MW-8        |
| Mu-3, 12.00 4.13 1.97                        | <b>#</b>                                    |
| MW 32 12.00 3189 2,63 1215 SHUEN             | \$ diw-30                                   |
| Dollare Collected From MN-30 120             | an-7                                        |
| TRIP CREATED BY ECS 6830                     | \$ AW-31                                    |
| Mu - 1 12.50 6.71 1.45 1305 SHEEN            |                                             |
|                                              | \$ Mw-3 2- 1 Mult                           |
| 1430 - DEPART SITE                           | T 7                                         |
|                                              | Jan J                                       |
|                                              | Φ                                           |
| Model 1                                      |                                             |
|                                              |                                             |
|                                              |                                             |
|                                              |                                             |
| <b>,</b>                                     | i                                           |

4. Oat With 1964



ŝ

# APPENDIX C

# LABORATORY ANALYTICAL REPORTS

Report Date: 09-Aug-05 13:52



☐ Final Report ☐ Re-Issued Report ☐ Revised Report

Featuring
HANIBAL TECHNOLOGY

# Laboratory Report

**Environmental Compliance Services** 

65 Millet Street; Suite 301 Richmond, VT 05477

Attn: Ronald Miller

Project: 521 Bay St - St. Johnsbury, VT

Project #: 08-204262

| <b>Laboratory ID</b> | Client Sample ID | <u>Matrix</u> | Date Sampled    | Date Received   |
|----------------------|------------------|---------------|-----------------|-----------------|
| SA31365-01           | SB-1-2           | Soil          | 18-Jul-05 09:15 | 21-Jul-05 08:40 |
| SA31365-02           | SB-1-8           | Soil          | 18-Jul-05 09:30 | 21-Jul-05 08:40 |
| SA31365-03           | SB-2-3           | Soil          | 18-Jul-05 09:45 | 21-Jul-05 08:40 |
| SA31365-04           | SB-2-3d          | Soil          | 18-Jul-05 09:50 | 21-Jul-05 08:40 |
| SA31365-05           | SB-2-11          | Soil          | 18-Jul-05 10:00 | 21-Jul-05 08:40 |
| SA31365-06           | SB-5-4 1/2       | Soil          | 18-Jul-05 10:10 | 21-Jul-05 08:40 |
| SA31365-07           | SB-5-8           | Soil          | 18-Jul-05 10:20 | 21-Jul-05 08:40 |
| SA31365-08           | SB-12-4          | Soil          | 18-Jul-05 13:30 | 21-Jul-05 08:40 |
| SA31365-09           | SB-12-11         | Soil          | 18-Jul-05 14:00 | 21-Jul-05 08:40 |
| SA31365-10           | SB-5-8d          | Soil          | 18-Jul-05 10:30 | 21-Jul-05 08:40 |
| SA31365-11           | SB-13-4          | Soil          | 18-Jul-05 15:00 | 21-Jul-05 08:40 |
| SA31365-12           | SB-13-7          | Soil          | 18-Jul-05 15:30 | 21-Jul-05 08:40 |
| SA31365-13           | SB-18-4          | Soil          | 19-Jul-05 09:30 | 21-Jul-05 08:40 |
| SA31365-14           | SB-18-6          | Soil          | 19-Jul-05 10:00 | 21-Jul-05 08:40 |
| SA31365-15           | SB-17-2 1/2      | Soil          | 19-Jul-05 08:00 | 21-Jul-05 08:40 |
| SA31365-16           | SB-17-5          | Soil          | 19-Jul-05 08:15 | 21-Jul-05 08:40 |

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. All applicable NELAC requirements have been met.

Please note that this report contains 38 pages of analytical data plus Chain of Custody document(s).

This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Massachusetts Certification # M-MA138/MA1110 Connecticut # PH-0777

Florida # E87600/E87936 Maine # MA138

New Hampshire # 2538/2972

New York # 11393/11840 Rhode Island # 98

USDA # S-51435

Vermont # VT-11393



Hanibal/C. Tayeh, Ph.D.
President/Laboratory Director

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method indicated. Please refer to our "Quality" webpage at www.spectrum-analytical.com for a full listing of our current certifications.



Matrix Soil Collection Date/Time 18-Jul-05 09:15

| CAS No.             | Analyte(s)                  | Result                                  | *RDL/Units       | Dilution | Method Ref.         | Prepared                              | Analyzed  | Batch   | Analysi | Flag  |
|---------------------|-----------------------------|-----------------------------------------|------------------|----------|---------------------|---------------------------------------|-----------|---------|---------|-------|
| Volatile            | Organic Compounds           | · · · · · · · · · · · · · · · · · · ·   |                  |          |                     | · · · · · · · · · · · · · · · · · · · | .,        |         |         |       |
|                     | VOC Extraction              | Field extracted                         | N/A              | 1        | VOC                 | 25-Jul-05                             | 25-Jul-05 | 5071509 | BD      |       |
| <u>Volatile</u>     | Organic Compounds by SW8    | <u>46 8260B</u>                         | Prepared by meth | od SW8   | 46 5030 Soil        | (high leve                            | el)       |         |         | VOCIO |
| 71-43-2             | Benzene                     | BRL                                     | 1160 μg/kg dry   | 250      | SW846 8260B         | 27-Jul-05                             | 28-Jul-05 | 5071663 | tim     |       |
| 100-41-4            | Ethylbenzene                | 8,800                                   | 1160 μg/kg dry   | 250      | tt                  | n                                     | **        | *1      | 11      |       |
| 1634-04-4           | Methyl tert-butyl ether     | BRL                                     | 1160 µg/kg dry   | 250      | 11                  | "                                     | n         | н       | *1      |       |
| 91-20-3             | Naphthalene                 | 23,800                                  | 1160 µg/kg dry   | 250      | 11                  | **                                    | n         | **      | 11      |       |
| 108-88-3            | Toluene                     | BRL                                     | 1160 μg/kg dry   | 250      |                     | 11                                    | u         | .,      | **      |       |
| 95-63-6             | 1,2,4-Trimethylbenzene      | 82,800                                  | 1160 µg/kg dry   | 250      | Ħ                   | **                                    | "         | **      | 11      |       |
| 108-67-8            | 1,3,5-Trimethylbenzene      | 26,100                                  | 1160 μg/kg dry   | 250      | n                   | "                                     | n         | n       | #1      |       |
| 1330-20-7           | m,p-Xylene                  | 45,500                                  | 2320 μg/kg dry   | 250      |                     | "                                     |           | 10      | n       |       |
| 95-47-6             | o-Xylene                    | 8,530                                   | 1160 µg/kg dry   | 250      | н                   | 0                                     | 11        | tt .    | 11      |       |
| Surrogate           | recoveries:                 | V-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 |                  |          |                     |                                       |           |         |         |       |
| 460-00-4            | 4-Bromofluorobenzene        | 104                                     | 70-130 %         |          | 11                  | **                                    | H         | 11      | u       |       |
| 2037-26-5           | Toluene-d8                  | 99.6                                    | 70-130 %         |          | ti .                | 11                                    | 11        | **      |         |       |
| 17060-07-0          | 1,2-Dichloroethane-d4       | 110                                     | 70-130 %         |          | "                   | **                                    | ti        | 0       | **      |       |
| 1868-53-7           | Dibromofluoromethane        | 101                                     | 70-130 %         |          | н                   |                                       | 11        | "       | 11      |       |
| Extracta            | able Petroleum Hydrocarbo   | ns                                      |                  |          |                     |                                       |           |         |         |       |
| Diesel R            | ange Organics               |                                         | Prepared by meth | od SW8   | 46 3545A            |                                       |           |         |         |       |
| 68476-30-2          | Fuel Oil #2                 | 6,110                                   | 27.0 mg/kg dry   |          | 8015BM/ME4.1<br>.25 | 28-Jul-05                             | 01-Aug-05 | 5071700 | KG      |       |
| 68476-31-3          | Fuel Oil #4                 | BRL                                     | 27.0 mg/kg dry   | 1        | 11                  | 11                                    | n         | "       |         |       |
| 68553-00 <b>-</b> 4 | Fuel Oil #6                 | BRL                                     | 27.0 mg/kg dry   | 1        | #                   | "                                     | 11        | "       | "       |       |
| M09800000           | Motor Oil                   | BRL                                     | 27.0 mg/kg dry   | 1        | n                   | "                                     | **        | **      | **      |       |
| 100100000           | Aviation Fuel               | BRL                                     | 27.0 mg/kg dry   | 1        | 11                  | n                                     |           | 11      | n       |       |
|                     | Unidentified                | BRL                                     | 27.0 mg/kg dry   | 1        | n                   | W                                     | u         | **      | 11      |       |
|                     | Other Oil                   | BRL                                     | 27.0 mg/kg dry   | 1        | H                   | o o                                   |           | P       |         |       |
|                     | Diesel Range Organics (DRO) | 6,110                                   | 27.0 mg/kg dry   | 1        | II .                | H.                                    | **        | "       | н       |       |
| Surrogate           | recoveries:                 |                                         |                  |          |                     |                                       |           |         |         |       |
| 3386-33-2           | 1-Chlorooctadecane          | 740                                     | 40-140 %         |          | ri .                | 11                                    | *1        | +1      | 11      | S-02  |
| General             | Chemistry Parameters        |                                         |                  |          |                     |                                       |           |         |         |       |
|                     | % Solids                    | 95.6                                    | %                | 1        | SM2540 G<br>Mod.    | 28-Jul-05                             | 28-Jul-05 | 5071771 | BD      |       |

Matrix Soil Collection Date/Time 18-Jul-05 09:30

|                                                         | Organic Compounds VOC Extraction Organic Compounds by SW84 Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene | 2,100<br>14,000<br>12,800 | N/A Prepared by meth 1220 µg/kg dry 1220 µg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1<br>nod SW8 | VOC<br>46 5030 Soil |            | 25-Jul-05 | 5071509 | BD  |                |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|------------|-----------|---------|-----|----------------|
| Volatile 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3    | VOC Extraction  Organic Compounds by SW84  Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene                         | 2,100<br>14,000<br>12,800 | Prepared by meth<br>1220 µg/kg dry<br>1220 µg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | od SW8       |                     |            |           | 5071509 | BD  |                |
| 71-43-2<br>100-41-4<br>1634-04-4<br>91-20-3<br>108-88-3 | Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene                                                                    | 2,100<br>14,000<br>12,800 | 1220 μg/kg dry<br>1220 μg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 46 5030 Soil        | (high leve | 1)        |         |     |                |
| 100-41-4<br>1634-04-4<br>91-20-3<br>108-88-3            | Ethylbenzene<br>Methyl tert-butyl ether<br>Naphthalene                                                                      | 14,000<br>12,800          | 1220 μg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500          |                     |            | 1)        |         |     | R-05,<br>VOC10 |
| 1634-04-4<br>91-20-3<br>108-88-3                        | Methyl tert-butyl ether Naphthalene                                                                                         | 12,800                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | SW846 8260B         | 27-Jul-05  | 28-Jul-05 | 5071663 | tim | 10010          |
| 91-20-3<br>108-88-3                                     | Naphthalene                                                                                                                 | = '-                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500          | "                   | 11         | u         | 11      | n   |                |
| 108-88-3                                                | •                                                                                                                           | 0.050                     | 1220 μg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500          | H                   | It         | 11        | 10      | If  |                |
|                                                         | Talvana                                                                                                                     | 8,070                     | 1220 µg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500          | n .                 | "          | 11        | Ħ       | Ħ   |                |
| 95-63-6                                                 | Totuene                                                                                                                     | 1,510                     | 1220 µg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500          | 11                  | "          | 11        | н       | n   |                |
|                                                         | 1,2,4-Trimethylbenzene                                                                                                      | 39,100                    | 1220 µg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500          | "                   | **         | "         | 0       | fl  |                |
| 108-67-8                                                | 1,3,5-Trimethylbenzene                                                                                                      | 12,300                    | 1220 µg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500          | **                  | **         | **        | n       | n   |                |
| 1330-20-7                                               | m,p-Xylene                                                                                                                  | 60,500                    | 2440 μg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500          | "                   | **         | **        | ti      | Ħ   |                |
| 95-47-6                                                 | o-Xylene                                                                                                                    | 4,760                     | 1220 μg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500          | n                   | u          | **        | Ħ       | 10  |                |
| Surrogat                                                | e recoveries:                                                                                                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                     |            |           |         |     |                |
| 460-00-4                                                | 4-Bromofluorobenzene                                                                                                        | 103                       | 70-130 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                     | **         |           | **      | 0   |                |
| 2037-26-5                                               | Toluene-d8                                                                                                                  | 99.6                      | 70-130 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | II                  | "          | U         | 19      | H   |                |
| 17060-07-0                                              | 1,2-Dichloroethane-d4                                                                                                       | 104                       | 70-130 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | "                   | **         | 11        | 11      | "   |                |
| 1868-53-7                                               | Dibromofluoromethane                                                                                                        | 97.6                      | 70-130 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | II .                | 11         | **        | ti      | *1  |                |
| Extract                                                 | able Petroleum Hydrocarboi                                                                                                  | ns                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                     |            |           |         |     |                |
| Diesel R                                                | ange Organics                                                                                                               |                           | Prepared by meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | od SW8       | 46 3545A            |            |           |         |     |                |
| 68476-30-2                                              | Fuel Oil #2                                                                                                                 | Calculated as             | 33.1 mg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1            | 8015BM/ME4.1<br>.25 | 28-Jul-05  | 01-Aug-05 | 5071700 | KG  |                |
| 68476-31-3                                              | Fuel Oil #4                                                                                                                 | BRL                       | 33.1 mg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1            | u u                 | #1         | 11        | 11      | 0   |                |
| 68553-00-4                                              | Fuel Oil #6                                                                                                                 | BRL                       | 33.1 mg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1            | H.                  | 111        | 0         | н       | 11  |                |
| M09800000                                               | Motor Oil                                                                                                                   | BRL                       | 33.1 mg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1            | If                  | #          | 0         | U       | и   |                |
| J00100000                                               | Aviation Fuel                                                                                                               | BRL                       | 33.1 mg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1            | 11                  | 10         | 11        | "       | It  |                |
|                                                         | Unidentified                                                                                                                | 1,750                     | 33.1 mg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1            | 11                  | 11         | *1        | **      | n   |                |
|                                                         | Other Oil                                                                                                                   | Calculated as             | 33.1 mg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1            | 0                   |            | **        | "       | 11  |                |
|                                                         | Diesel Range Organics (DRO)                                                                                                 | 1,750                     | 33.1 mg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | ti .                | u          | Iŧ        | 11      | . " |                |
| Surrogat                                                | e recoveries:                                                                                                               |                           | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |              |                     |            |           |         |     |                |
| 3386-33-2                                               | 1-Chlorooctadecane                                                                                                          | 220                       | 40-140 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •            | 11                  | Ħ          | 19        | H       | n   | S-02           |
| Genera                                                  | Chemistry Parameters                                                                                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                     |            |           |         |     |                |
|                                                         | % Solids                                                                                                                    | 78.2                      | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1            | SM2540 G<br>Mod.    | 28-Jul-05  | 28-Jul-05 | 5071771 | BD  |                |
|                                                         | Fractional Organic Carbon                                                                                                   | 0.0056                    | 0.0001 N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1            | SW846 9060          | 02-Aug-05  | 02-Aug-05 | 5080235 | AW  |                |

Matrix Soil Collection Date/Time 18-Jul-05 09:45

| CAS No.          | Analyte(s)                  | Result          | *RDL/Units       | Dilution | Method Ref.         | Prepared   | Analyzed  | Batch   | Analyst | Flag          |
|------------------|-----------------------------|-----------------|------------------|----------|---------------------|------------|-----------|---------|---------|---------------|
| Volatile         | Organic Compounds           |                 |                  |          |                     |            |           |         |         |               |
|                  | VOC Extraction              | Field extracted | N/A              | 1        | VOC                 | 25-Jul-05  | 25-Jul-05 | 5071509 | BD      |               |
| <u>Volatile</u>  | Organic Compounds by SW84   | 46 8260B        | Prepared by meth | od SW8   | 46 5030 Soil        | (high leve | el)       |         |         | R-05,<br>VOC1 |
| 71-43-2          | Benzene                     | 4,720           | 1370 μg/kg dry   | 250      | SW846 8260B         | 27-Jul-05  | 28-Jul-05 | 5071663 | tim     | VOCI          |
| 100-41-4         | Ethylbenzene                | 6,740           | 1370 μg/kg dry   | 250      | •                   | **         | *1        | **      | **      |               |
| 1634-04-4        | Methyl tert-butyl ether     | BRL             | 1370 μg/kg dry   | 250      | U                   | "          | "         | н       | **      |               |
| 1-20-3           | Naphthalene                 | 14,700          | 1370 μg/kg dry   | 250      | н                   | . "        | "         | n .     | **      |               |
| 08-88-3          | Toluene                     | 2,730           | 1370 µg/kg dry   | 250      | 11                  | n          | "         | н       | #       |               |
| 5-63-6           | 1,2,4-Trimethylbenzene      | 57,600          | 1370 μg/kg dry   | 250      | n                   | n          | #1        | n .     | **      |               |
| 08-67-8          | 1,3,5-Trimethylbenzene      | 20,900          | 1370 μg/kg dry   | 250      | 11                  | "          | 0         | "       | 11      |               |
| 330-20-7         | m,p-Xylene                  | 73,500          | 2740 μg/kg dry   | 250      | 19                  | **         | n         | **      | n       |               |
| 95-47 <b>-</b> 6 | o-Xylene                    | BRL             | 1370 µg/kg dry   | 250      | H                   | "          | u         | n       | **      |               |
| Surrogate        | recoveries:                 |                 |                  |          |                     |            |           |         |         |               |
| 60-00-4          | 4-Bromofluorobenzene        | 106             | 70-130 %         |          | #                   | "          | "         | 10      | 11      |               |
| 037-26-5         | Toluene-d8                  | 102             | 70-130 %         |          | н                   | U          |           | 11      | 11      |               |
| 7060-07-0        | 1,2-Dichloroethane-d4       | 110             | 70-130 %         |          | n                   | u          | 11        | n       | **      |               |
| 868-53-7         | Dibromofluoromethane        | 100             | 70-130 %         |          | Ħ                   | U          | n         | "       | "       |               |
| Extracta         | able Petroleum Hydrocarbo   | ns              |                  |          |                     |            |           |         |         |               |
| Diesel R         | ange Organics               |                 | Prepared by meth | od SW8   | 46 3545A            |            |           |         |         |               |
| 58476-30-2       | Fuel Oil #2                 | Calculated as   | 38.5 mg/kg dry   | 1        | 8015BM/ME4.1<br>.25 | 28-Jul-05  | 01-Aug-05 | 5071700 | KG      |               |
| 8476-31-3        | Fuel Oil #4                 | BRL             | 38.5 mg/kg dry   | 1        | P                   | **         | II .      | u       | **      |               |
| 8553-00-4        | Fuel Oil #6                 | BRL             | 38.5 mg/kg dry   | 1        | II.                 | "          | **        | n       | 11      |               |
| M09800000        | Motor Oil                   | BRL             | 38.5 mg/kg dry   | 1        | D .                 |            | · n       | **      | 10      |               |
| 00100000         | Aviation Fuel               | BRL             | 38.5 mg/kg dry   | 1        | n                   | "          | "         | #       | 19      |               |
|                  | Unidentified                | 1,920           | 38.5 mg/kg dry   | 1        | . "                 | n          | **        |         | ш       |               |
|                  | Other Oil                   | Calculated as   | 38.5 mg/kg dry   | 1        | **                  | "          | **        | "       | 11      |               |
|                  | Diesel Range Organics (DRO) | 1,920           | 38.5 mg/kg dry   | 1        | "                   | u          | "         | H       | "       |               |
| Surrogate        | recoveries:                 |                 |                  |          |                     |            |           |         |         |               |
| 386-33-2         | 1-Chlorooctadecane          | 162             | 40-140 %         |          | W.                  | *1         | u         | ti      | ti      | S-02          |
| General          | Chemistry Parameters        |                 |                  |          |                     |            |           |         |         |               |
| ٠                | % Solids                    | 69.3            | %                | 1        | SM2540 G<br>Mod.    | 28-Jul-05  | 28-Jul-05 | 5071771 | BD      |               |

Matrix Soil Collection Date/Time 18-Jul-05 09:50

| CAS No.    | Analyte(s)                    | Result          | *RDL/Units       | Dilution | Method Ref.         | Prepared   | Analyzed  | Batch   | Analysi | t Flag         |
|------------|-------------------------------|-----------------|------------------|----------|---------------------|------------|-----------|---------|---------|----------------|
| Volatile   | Organic Compounds             |                 |                  |          |                     |            |           |         |         |                |
|            | VOC Extraction                | Field extracted | N/A              | 1        | VOC                 | 25-Jul-05  | 25-Jul-05 | 5071509 | BD      |                |
| Volatile ( | Organic Compounds by SW84     | 16 8260B        | Prepared by meth | od SW8   | 46 5030 Soil        | (high leve | ·l)       |         |         | R-05,<br>VOC10 |
| 71-43-2    | Benzene                       | 4,370           | 3730 μg/kg dry   | 500      | SW846 8260B         | 27-Jul-05  | 28-Jul-05 | 5071663 | tim     | VOCIO          |
| 100-41-4   | Ethylbenzene                  | 4,740           | 3730 μg/kg dry   | 500      | "                   | u          | Ħ         | **      | 11      |                |
| 1634-04-4  | Methyl tert-butyl ether       | BRL             | 3730 μg/kg dry   | 500      | п                   | н          | n         | 11      | 11      |                |
| 91-20-3    | Naphthalene                   | 14,300          | 3730 µg/kg dry   | 500      | u                   | 11         | **        | **      | "       |                |
| 108-88-3   | Toluene                       | BRL             | 3730 μg/kg dry   | 500      | II .                |            | tt        |         | **      |                |
| 95-63-6    | 1,2,4-Trimethylbenzene        | 49,500          | 3730 μg/kg dry   | 500      | п                   | u          | **        | **      | "       |                |
| 108-67-8   | 1,3,5-Trimethylbenzene        | 18,300          | 3730 μg/kg dry   | 500      |                     | u          | *1        | H       | u       |                |
| 1330-20-7  | m,p-Xylene                    | 70,000          | 7460 μg/kg dry   | 500      | II .                | u          | tt        | n       | ti      |                |
| 95-47-6    | o-Xylene                      | BRL             | 3730 μg/kg dry   | 500      | n                   | U          | 11        | **      | **      |                |
| Surrogate  | recoveries:                   |                 |                  |          |                     |            |           |         |         |                |
| 460-00-4   | 4-Bromofluorobenzene          | 102             | 70-130 %         |          | n .                 | n          | 11        | **      | II      |                |
| 2037-26-5  | Toluene-d8                    | 98.6            | 70-130 %         |          | u ·                 | u          | н         | "       | U       |                |
| 17060-07-0 | 1,2-Dichloroethane-d4         | 108             | 70-130 %         |          | u                   | **         | 11        | **      | н       |                |
| 1868-53-7  | Dibromofluoromethane          | 98.6            | 70-130 %         |          | 11                  | *1         | "         | H       | U       |                |
| Extracta   | ible Petroleum Hydrocarboi    | ns              |                  |          |                     |            |           |         |         |                |
| Diesel R   | ange Organics                 |                 | Prepared by meth | od SW8   | 46 3545A            |            |           |         |         |                |
| 68476-30-2 | Fuel Oil #2                   | 3,760           | 37.6 mg/kg dry   | 1        | 8015BM/ME4.1<br>.25 | 28-Jul-05  | 01-Aug-05 | 5071700 | KG      |                |
| 68476-31-3 | Fuel Oil #4                   | BRL             | 37.6 mg/kg dry   | 1        |                     | 11         | u         | 0       | 11      |                |
| 68553-00-4 | Fuel Oil #6                   | BRL             | 37.6 mg/kg dry   | 1        | 11                  | "          | n         | tt      | **      |                |
| M09800000  | Motor Oil                     | BRL             | 37.6 mg/kg dry   | 1        | и                   | "          | ŧı        | ıı      | 11      |                |
| J00100000  | Aviation Fuel                 | BRL             | 37.6 mg/kg dry   | 1        | u                   | 0          | n         | **      | 11      |                |
|            | Unidentified                  | BRL             | 37.6 mg/kg dry   | 1        | u                   | 0          | и         | "       | 11      |                |
|            | Other Oil                     | BRL             | 37.6 mg/kg dry   | 1        | n                   | u          | *1        | 11      | 19      |                |
|            | Diesel Range Organics (DRO)   | 3,760           | 37.6 mg/kg dry   | 1        | 11                  | 11         | 11        | "       | H       |                |
| Surrogate  | recoveries:                   |                 |                  |          |                     |            | -         |         |         |                |
| 3386-33-2  | 1-Chlorooctadecane            | 210             | 40-140 %         |          | II                  | 11         | ŋ         | 11      | ti      | S-02           |
| General    | Chemistry Parameters % Solids | 71.9            | %                | . 1      | SM2540 G<br>Mod.    | 28-Jul-05  | 28-Jul-05 | 5071771 | BD      |                |

Matrix Soil Collection Date/Time 18-Jul-05 10:00

| CAS No.    | Analyte(s)                  | Result          | *RDL/Units       | Dilution | Method Ref.         | Prepared   | Analyzed  | Batch   | Analysi | t Flag |
|------------|-----------------------------|-----------------|------------------|----------|---------------------|------------|-----------|---------|---------|--------|
| Volatile   | Organic Compounds           |                 |                  |          |                     |            |           |         |         |        |
|            | VOC Extraction              | Field extracted | N/A              | 1        | VOC                 | 25-Jul-05  | 25-Jul-05 | 5071509 | BD      |        |
| Volatile   | Organic Compounds by SW84   | 46 8260B        | Prepared by meth | od SW8   | 46 5030 Soil        | (high leve | el)       |         |         | VOCI   |
| 71-43-2    | Benzene                     | BRL             | 209 μg/kg dry    | 50       | SW846 8260B         | 27-Jul-05  | 28-Jul-05 | 5071663 | tim     |        |
| 100-41-4   | Ethylbenzene                | BRL             | 209 μg/kg dry    | 50       | 0                   | n          | n         | **      | **      |        |
| 1634-04-4  | Methyl tert-butyl ether     | 944             | 209 μg/kg dry    | 50       | 11                  | "          | O         | H       | ti      |        |
| 91-20-3    | Naphthalene                 | 259             | 209 μg/kg dry    | 50       | 10                  | "          | n         | 11      | "       |        |
| 108-88-3   | Toluene                     | BRL             | 209 μg/kg dry    | 50       | 11                  | 11         | n         | **      | "       |        |
| 95-63-6    | 1,2,4-Trimethylbenzene      | 280             | 209 μg/kg dry    | 50       | **                  | •          | "         | **      | u       |        |
| 108-67-8   | 1,3,5-Trimethylbenzene      | BRL             | 209 μg/kg dry    | 50       | 11                  | "          | 11        | 11      | "       |        |
| 1330-20-7  | m,p-Xylene                  | 524             | 418 μg/kg dry    | 50       | 11                  | H          | **        | **      | U       |        |
| 95-47-6    | o-Xylene                    | BRL             | 209 μg/kg dry    | 50       | ti                  | u          | 11        | "       | n       |        |
| Surrogate  | recoveries:                 |                 |                  |          |                     |            |           |         |         |        |
| 460-00-4   | 4-Bromofluorobenzene        | 101             | 70-130 %         |          | U                   | n          | **        | *1      | 11      |        |
| 2037-26-5  | Toluene-d8                  | 98.0            | 70-130 %         |          | n                   | II.        | +1        | n       | 11      |        |
| 17060-07-0 | 1,2-Dichloroethane-d4       | 108             | 70-130 %         |          | o o                 | u          | **        | **      | 11      |        |
| 1868-53-7  | Dibromofluoromethane        | 100             | 70-130 %         |          | n                   |            | 11        | n       | **      |        |
| Extracta   | able Petroleum Hydrocarbo   | ns              |                  |          |                     |            |           |         |         |        |
| Diesel R   | ange Organics               |                 | Prepared by meth | od SW8   | 46 3545A            |            |           |         |         |        |
| 68476-30-2 | Fuel Oil #2                 | Calculated as   | 33.7 mg/kg dry   | 1        | 8015BM/ME4.1<br>.25 | 28-Jul-05  | 01-Aug-05 | 5071700 | KG      |        |
| 68476-31-3 | Fuel Oil #4                 | BRL             | 33.7 mg/kg dry   | 1        | п                   | u          | 11        | 11      | n       |        |
| 68553-00-4 | Fuel Oil #6                 | BRL             | 33.7 mg/kg dry   | 1        | n                   | n          | It        | **      | 11      |        |
| M09800000  | Motor Oil                   | BRL             | 33.7 mg/kg dry   | 1        | 11                  | "          | 11        | **      | "       |        |
| J00100000  | Aviation Fuel               | BRL             | 33.7 mg/kg dry   | 1        | n                   | U          | 11        | **      | u       |        |
|            | Unidentified                | 55.9            | 33.7 mg/kg dry   | 1        | Ħ                   | н          | 11        | 11      | U       |        |
|            | Other Oil                   | BRL             | 33.7 mg/kg dry   | 1        | 11                  | Ħ          | 31        | · H-    | "       |        |
|            | Diesel Range Organics (DRO) | 55.9            | 33.7 mg/kg dry   | 1        | 11                  | "          | 11        | 11      | IJ      |        |
| Surrogate  | recoveries:                 |                 |                  |          |                     |            |           |         |         |        |
| 3386-33-2  | 1-Chlorooctadecane          | 60.4            | 40-140 %         |          | 11                  | n          | n         | 11      | 11      |        |
| General    | Chemistry Parameters        |                 |                  |          |                     |            |           |         |         |        |
|            | % Solids                    | 76.8            | %                | 1        | SM2540 G<br>Mod.    | 28-Jul-05  | 28-Jul-05 | 5071771 | BD      |        |

Matrix Soil Collection Date/Time 18-Jul-05 10:10

| CAS No.         | Analyte(s)                  | Result          | *RDL/Units       | Dilution | Method Ref.         | Prepared   | Analyzed  | Batch   | Analyst | Flag |
|-----------------|-----------------------------|-----------------|------------------|----------|---------------------|------------|-----------|---------|---------|------|
| Volatile        | Organic Compounds           |                 |                  |          |                     |            |           |         |         |      |
|                 | VOC Extraction              | Field extracted | N/A              | 1        | VOC                 | 25-Jul-05  | 25-Jul-05 | 5071509 | BD      |      |
| <u>Volatile</u> | Organic Compounds by SW84   | 16 8260B        | Prepared by meth | od SW8   | 46 5035A Soi        | l (low lev | rel)      |         |         | VOCI |
| 71-43-2         | Benzene                     | 15.8            | 6.0 μg/kg dry    | 1        | SW846 8260B         | 27-Jul-05  | 27-Jul-05 | 5071621 | tim     |      |
| 100-41-4        | Ethylbenzene                | 7.0             | 6.0 μg/kg dry    | 1        | 0                   | 19         | **        | н       | 11      |      |
| 1634-04-4       | Methyl tert-butyl ether     | 9.1             | 6.0 μg/kg dry    | 1        | н                   | u          | 11        | **      | 11      |      |
| 91-20-3         | Naphthalene                 | 22.9            | 6.0 μg/kg dry    | 1        | u                   | U          | n         | **      | 11      |      |
| 108-88-3        | Toluene                     | 8.1             | 6.0 μg/kg dry    | 1        | п                   | H          | **        | **      | 11      |      |
| 95-63-6         | 1,2,4-Trimethylbenzene      | 64.5            | 6.0 μg/kg dry    | 1        | U                   | n          | **        | **      | 11      |      |
| 108-67-8        | 1,3,5-Trimethylbenzene      | 17.2            | 6.0 μg/kg dry    | 1        | 11                  | 11         | u         | U       | **      |      |
| 1330-20-7       | m,p-Xylene                  | 46.9            | 12.0 μg/kg dry   | 1        | t <del>e</del>      | "          | n         | 19      | **      |      |
| 95-47-6         | o-Xylene                    | 8.1             | 6.0 μg/kg dry    | 1        | IF                  | **         | U         | n       | Ħ       |      |
| Surrogate       | recoveries:                 |                 |                  |          |                     |            |           |         |         |      |
| 460-00-4        | 4-Bromofluorobenzene        | 97.6            | 70-130 %         |          | 11                  | Ħ          | n         | 11      | ti      |      |
| 2037-26-5       | Toluene-d8                  | 98.2            | 70-130 %         |          | 19                  | **         | Ħ         | U       | **      |      |
| 17060-07-0      | 1,2-Dichloroethane-d4       | 109             | 70-130 %         |          | 10                  | "          | u         | n       | н       |      |
| 1868-53-7       | Dibromofluoromethane        | 106             | 70-130 %         |          | 16                  | **         | U         | n       | *1      |      |
| Extracta        | able Petroleum Hydrocarboi  | 18              |                  |          |                     |            |           |         |         |      |
|                 | ange Organics               |                 | Prepared by meth | od SW8   | 46 3545A            |            |           |         |         |      |
|                 | Fuel Oil #2                 | Calculated as   | 33.1 mg/kg dry   | 1        | 8015BM/ME4.1<br>.25 | 28-Jul-05  | 01-Aug-05 | 5071700 | KG      |      |
| 68476-31-3      | Fuel Oil #4                 | BRL             | 33.1 mg/kg dry   | 1        | u                   | u          | 11        | . 11    | 11      |      |
| 68553-00-4      | Fuel Oil #6                 | BRL             | 33.1 mg/kg dry   | 1        | u                   | D          | #         | **      | 11      |      |
| M09800000       | Motor Oil                   | BRL             | 33.1 mg/kg dry   | 1        | "                   | u          | 11        | 11      | U       |      |
| J00100000       | Aviation Fuel               | BRL             | 33.1 mg/kg dry   | 1        | 11                  | u          | "         | "       | "       |      |
|                 | Unidentified                | 190             | 33.1 mg/kg dry   | 1        | 11                  | "          | "         | 11      | **      |      |
|                 | Other Oil                   | BRL             | 33.1 mg/kg dry   | 1        | "                   | "          | n         | "       | *       |      |
|                 | Diesel Range Organics (DRO) | 190             | 33.1 mg/kg dry   | 1        | H .                 | "          | **        | "       | "       |      |
| Surrogate       | recoveries:                 |                 |                  |          |                     |            |           |         |         |      |
| 3386-33-2       | 1-Chlorooctadecane          | 91.1            | 40-140 %         |          | 0                   | n          | Ħ         | "       | "       |      |
| General         | Chemistry Parameters        |                 |                  |          |                     |            |           |         |         |      |
|                 | % Solids                    | 80.0            | %                | 1        | SM2540 G<br>Mod.    | 28-Jul-05  | 28-Jul-05 | 5071771 | BD      |      |

Matrix Soil Collection Date/Time 18-Jul-05 10:20

| CAS No.    | Analyte(s)                  | Result          | *RDL/Units       | Dilution | Method Ref.         | Prepared   | Analyzed  | Batch   | Analysi | t Flag |
|------------|-----------------------------|-----------------|------------------|----------|---------------------|------------|-----------|---------|---------|--------|
| Volatile   | Organic Compounds           |                 |                  |          |                     |            |           |         |         |        |
|            | VOC Extraction              | Field extracted | N/A              | 1        | VOC                 | 25-Jul-05  | 25-Jul-05 | 5071509 | BD      |        |
| Volatile   | Organic Compounds by SW84   | 16 8260B        | Prepared by meth | od SW8   | 46 5030 Soil        | (high leve | ·l)       |         |         | VOCIO  |
| 71-43-2    | Benzene                     | BRL             | 202 μg/kg dry    | 100      | SW846 8260B         | 27-Jul-05  | 28-Jul-05 | 5071663 | tim     |        |
| 100-41-4   | Ethylbenzene                | BRL             | 202 μg/kg dry    | 100      | n                   | *1         | 19        | 11      | U       |        |
| 1634-04-4  | Methyl tert-butyl ether     | BRL             | 202 μg/kg dry    | 100      | "                   | u          | **        | 11      | 19      |        |
| 91-20-3    | Naphthalene                 | 1,080           | 202 μg/kg dry    | 100      | "                   | **         | 11        | н       | 11      |        |
| 108-88-3   | Toluene                     | BRL             | 202 μg/kg dry    | 100      | **                  | 11         | 11        | **      | 11      |        |
| 95-63-6    | 1,2,4-Trimethylbenzene      | 2,010           | 202 μg/kg dry    | 100      | "                   | 11         | IP        | 11      | U       |        |
| 108-67-8   | 1,3,5-Trimethylbenzene      | 790             | 202 μg/kg dry    | 100      | "                   | "          | 19        | 11      | 19      |        |
| 1330-20-7  | m,p-Xylene                  | 1,230           | 405 μg/kg dry    | 100      | "                   | **         | 11        | 11      | 11      |        |
| 95-47-6    | o-Xylene                    | BRL             | 202 μg/kg dry    | 100      | n n                 | H          | 11        | "       | 11      |        |
| Surrogate  | recoveries:                 |                 |                  |          |                     |            |           |         |         |        |
| 460-00-4   | 4-Bromofluorobenzene        | 104             | 70-130 %         |          | "                   | u          | 19        | 19      | ŧ1      |        |
| 2037-26-5  | Toluene-d8                  | 96.2            | 70-130 %         |          | n                   | u          | 11        | 11      | 11      |        |
| 17060-07-0 | 1,2-Dichloroethane-d4       | 112             | 70-130 %         |          | n                   | er e       | 11        | n       | #1      |        |
| 1868-53-7  | Dibromofluoromethane        | 103             | 70-130 %         |          |                     | *1         | 11        | u       | 11      |        |
| Extracta   | able Petroleum Hydrocarboi  | ns              |                  |          |                     |            |           |         |         |        |
| Diesel R   | ange Organics               |                 | Prepared by meth | od SW8   | 46 3545A            |            |           |         |         |        |
| 68476-30-2 | Fuel Oil #2                 | 369             | 36.1 mg/kg dry   | 1        | 8015BM/ME4.1<br>.25 | 28-Jul-05  | 01-Aug-05 | 5071700 | KG      |        |
| 68476-31-3 | Fuel Oil #4                 | BRL             | 36.1 mg/kg dry   | 1        | **                  | **         | n         | n       | 11      |        |
| 68553-00-4 | Fuel Oil #6                 | BRL             | 36.1 mg/kg dry   | $\sim 1$ | 10                  | **         | u         | 19      | "       |        |
| м09800000  | Motor Oil                   | BRL             | 36.1 mg/kg dry   | 1        | "                   | **         | (I        | 11      | U       |        |
| J00100000  | Aviation Fuel               | BRL             | 36.1 mg/kg dry   | 1        | ıı                  | "          | n         | Ħ       | tt      |        |
|            | Unidentified                | BRL             | 36.1 mg/kg dry   | 1        | n                   | "          | n         | u       | *1      |        |
|            | Other Oil                   | BRL             | 36.1 mg/kg dry   | 1        | ч                   | "          | Ħ         | *1      | *1      |        |
|            | Diesel Range Organics (DRO) | 369             | 36.1 mg/kg dry   | 1        | u                   | 10         | n         | ti      | **      |        |
| Surrogate  | e recoveries:               |                 |                  |          |                     |            |           |         |         |        |
| 3386-33-2  | 1-Chlorooctadecane          | 86.3            | 40-140 %         |          | v                   | *          | n         | 11      | "       |        |
| General    | Chemistry Parameters        |                 |                  |          |                     |            |           |         |         |        |
|            | % Solids                    | 72.2            | %                | 1        | SM2540 G<br>Mod.    | 28-Jul-05  | 28-Jul-05 | 5071771 | BD      |        |

Matrix Soil Collection Date/Time 18-Jul-05 13:30

| CAS No.           | Analyte(s)                  | Result          | *RDL/Units       | Dilution | Method Ref.         | Prepared   | Analyzed  | Batch   | Analysi | Flag          |
|-------------------|-----------------------------|-----------------|------------------|----------|---------------------|------------|-----------|---------|---------|---------------|
| Volatile          | Organic Compounds           |                 |                  |          |                     |            |           |         |         |               |
|                   | VOC Extraction              | Field extracted | N/A              | 1        | VOC                 | 25-Jul-05  | 25-Jul-05 | 5071509 | BD      |               |
| Volatile          | Organic Compounds by SW84   | 16 8260B        | Prepared by meth | od SW8   | 46 5030 Soil        | (high leve | el)       |         |         | R-05,<br>VOC1 |
| 71-43-2           | Benzene                     | BRL             | 180 μg/kg dry    | 100      | SW846 8260B         | 27-Jul-05  | 28-Jul-05 | 5071663 | tim     | VUCI          |
| 100-41-4          | Ethylbenzene                | BRL             | 180 μg/kg dry    | 100      | n                   | n          | "         | н       | n       |               |
| 634-04-4          | Methyl tert-butyl ether     | BRL             | 180 μg/kg dry    | 100      | II                  | n          | Ħ         | 11      | 11      |               |
| 1-20-3            | Naphthalene                 | BRL             | 360 μg/kg dry    | 100      | 19                  | 19         | n         | n       | "       |               |
| 08-88-3           | Toluene                     | BRL             | 180 μg/kg dry    | 100      | 19                  | 15         | n         | u       | **      |               |
| 5-63-6            | 1,2,4-Trimethylbenzene      | 345             | 180 μg/kg dry    | 100      |                     |            | Ħ         | Ħ       | 11      |               |
| 08-67-8           | 1,3,5-Trimethylbenzene      | BRL             | 180 μg/kg dry    | 100      | 16                  | 11         | н         | U       | **      |               |
| 330-20-7          | m,p-Xylene                  | BRL             | 360 µg/kg dry    | 100      | 11                  | 41         | Ħ         | 11      | **      |               |
| 95-47-6           | o-Xylene                    | BRL             | 180 μg/kg dry    | 100      | 11                  | "          | U         | 11      | n       |               |
| Surrogate         | recoveries:                 |                 |                  |          |                     |            |           |         |         |               |
| 60-00-4           | 4-Bromofluorobenzene        | 106             | 70-130 %         |          | 11                  | **         | n         | 19      | "       |               |
| 037-26-5          | Toluene-d8                  | 96.8            | 70-130 %         |          | **                  | *1         | u         | 10      | 11      |               |
| 7060-07-0         | 1,2-Dichloroethane-d4       | 112             | 70-130 %         |          | **                  | ti         | 11        | 10      | n       |               |
| 868-53-7          | Dibromofluoromethane        | 103             | 70-130 %         |          | et e                | ti .       | ij        | 11      | H       |               |
| Extracta          | able Petroleum Hydrocarboi  | 18              |                  |          |                     |            |           |         |         |               |
| Diesel R          | ange Organics               |                 | Prepared by meth | od SW8   | 46 3545A            |            |           |         |         |               |
| 8476-30-2         | Fuel Oil #2                 | 3,620           | 34.9 mg/kg dry   | 1        | 8015BM/ME4.1<br>.25 | 28-Jul-05  | 01-Aug-05 | 5071700 | KG      |               |
| 8476-31-3         | Fuel Oil #4                 | BRL             | 34.9 mg/kg dry   | 1        | u                   | <b>91</b>  | II.       | 11      | **      |               |
| 8553-00-4         | Fuel Oil #6                 | BRL             | 34.9 mg/kg dry   | 1        | 11                  | **         | 11        | 11      | **      |               |
| <b>4098</b> 00000 | Motor Oil                   | BRL             | 34.9 mg/kg dry   | 1        | 11                  | **         | 11        | 10      | **      |               |
| 00100000          | Aviation Fuel               | BRL             | 34.9 mg/kg dry   | 1        | 41                  | **         | 11        | 19      | **      |               |
|                   | Unidentified                | BRL             | 34.9 mg/kg dry   | 1        | er                  | D          | 11        | н       | 0       |               |
|                   | Other Oil                   | BRL             | 34.9 mg/kg dry   | 1        | u                   | ŧi         | **        | 11      | 11      |               |
|                   | Diesel Range Organics (DRO) | 3,620           | 34.9 mg/kg dry   | 1        | "                   | 0          | " '       | 11      |         |               |
| Surrogate         | recoveries:                 |                 |                  |          |                     |            |           |         |         |               |
| 386-33-2          | 1-Chlorooctadecane          | 73.9            | 40-140 %         |          | n                   | "          | 11        | 11      | "       |               |
| General           | Chemistry Parameters        |                 |                  |          |                     |            |           |         |         |               |
|                   | % Solids                    | 72.9            | %                | 1        | SM2540 G<br>Mod.    | 29-Jul-05  | 29-Jul-05 | 5071795 | BD      |               |

Matrix Soil Collection Date/Time 18-Jul-05 14:00

| CAS No.    | Analyte(s)                  | Result          | *RDL/Units       | Dilution | Method Ref.         | Prepared   | Analyzed  | Batch   | Analysi | Flag |
|------------|-----------------------------|-----------------|------------------|----------|---------------------|------------|-----------|---------|---------|------|
| Volatile   | Organic Compounds           |                 |                  |          | <u> </u>            |            |           |         |         |      |
|            | VOC Extraction              | Field extracted | N/A              | 1        | VOC                 | 25-Jul-05  | 25-Jul-05 | 5071509 | BD      |      |
| Volatile ( | Organic Compounds by SW84   | 16 8260B        | Prepared by meth | od SW8   | 46 5030 Soil        | (high leve | 1)        |         |         | voci |
| 71-43-2    | Benzene                     | BRL             | 140 µg/kg dry    | 50       | SW846 8260B         | 27-Jul-05  | 28-Jul-05 | 5071663 | tim     |      |
| 100-41-4   | Ethylbenzene                | 140             | 140 µg/kg dry    | 50       | 11                  | "          | n         | ți.     | **      |      |
| 1634-04-4  | Methyl tert-butyl ether     | BRL             | 140 μg/kg dry    | 50       | 11                  | **         | ti .      | "       | **      |      |
| 91-20-3    | Naphthalene                 | 1,160           | 140 µg/kg dry    | 50       | 11                  | 11         | . 4       | 11      | 11      |      |
| 108-88-3   | Toluene                     | BRL             | 140 μg/kg dry    | 50       | 11                  | "          | "         | n       | 11      |      |
| 95-63-6    | 1,2,4-Trimethylbenzene      | 1,740           | 140 µg/kg dry    | 50       | u                   | ıı         | **        | 10      | U       |      |
| 108-67-8   | 1,3,5-Trimethylbenzene      | 695             | 140 μg/kg dry    | 50       | u                   | "          | н         | **      | 11      |      |
| 1330-20-7  | m,p-Xylene                  | 722             | 280 μg/kg dry    | 50       | II                  | "          | п         | tı      | 10      |      |
| 95-47-6    | o-Xylene                    | BRL             | 140 μg/kg dry    | 50       | II .                | IJ         | 11        | **      | "       |      |
| Surrogate  | recoveries:                 |                 |                  |          |                     |            |           |         |         |      |
| 460-00-4   | 4-Bromofluorobenzene        | 104             | 70-130 %         |          | 11                  | 11         | n         | 11      | 11      |      |
| 2037-26-5  | Toluene-d8                  | 98.0            | 70-130 %         |          | 11                  | "          | n         | "       | 11      |      |
| 17060-07-0 | 1,2-Dichloroethane-d4       | 112             | 70-130 %         |          | U                   | "          | "         | *1      | 11      |      |
| 1868-53-7  | Dibromofluoromethane        | 102             | 70-130 %         |          | u                   | ıı         | я         | *1      | "       |      |
| Extracta   | ble Petroleum Hydrocarbo    | ns              |                  |          |                     |            |           |         |         |      |
| Diesel Ro  | ange Organics               |                 | Prepared by meth | od SW8   | 46 3545A            |            |           |         |         |      |
| 68476-30-2 | Fuel Oil #2                 | Calculated as   | 36.8 mg/kg dry   | 1        | 8015BM/ME4.1<br>.25 | 28-Jul-05  | 01-Aug-05 | 5071700 | KG      |      |
| 68476-31-3 | Fuel Oil #4                 | BRL             | 36.8 mg/kg dry   | 1        | "                   | "          | "         | 19      | 11      |      |
| 68553-00-4 | Fuel Oil #6                 | BRL             | 36.8 mg/kg dry   | 1        | n                   | Ħ          | "         | *1      | "       |      |
| M09800000  | Motor Oil                   | BRL             | 36.8 mg/kg dry   | 1        | "                   | O          | 11        | 11      | "       |      |
| J00100000  | Aviation Fuel               | BRL             | 36.8 mg/kg dry   | 1        | **                  | ti         | 11        | "       | **      |      |
|            | Unidentified                | 104             | 36.8 mg/kg dry   | 1        | H.                  | H          | ti        | "       | 19      |      |
|            | Other Oil                   | BRL             | 36.8 mg/kg dry   | 1        | 19                  | 11         | ti        | u       | 10      |      |
|            | Diesel Range Organics (DRO) | 104             | 36.8 mg/kg dry   | 1        | I <del>†</del>      |            | *1        | 11      | 11      |      |
| Surrogate  | recoveries:                 |                 |                  |          |                     |            |           |         |         |      |
| 3386-33-2  | 1-Chlorooctadecane          | 61.4            | 40-140 %         |          | 11                  | O          | 11        | 11      | Ħ       |      |
| General    | Chemistry Parameters        |                 |                  |          |                     |            |           |         |         |      |
|            | % Solids                    | 71.1            | %                | 1        | SM2540 G<br>Mod.    |            | 29-Jul-05 |         |         |      |
|            | Fractional Organic Carbon   | 0.0054          | 0.0001 N/A       | 1        | SW846 9060          | 02-Aug-05  | 02-Aug-05 | 5080235 | AW      |      |

Matrix Soil Collection Date/Time 18-Jul-05 10:30

| CAS No.    | Analyte(s)                  | Result          | *RDL/Units       | Dilution | Method Ref.         | Prepared   | Analyzed  | Batch     | Analysi | Flag  |
|------------|-----------------------------|-----------------|------------------|----------|---------------------|------------|-----------|-----------|---------|-------|
| Volatile   | Organic Compounds           |                 |                  |          |                     |            |           |           |         |       |
|            | VOC Extraction              | Field extracted | N/A              | 1        | VOC                 | 25-Jul-05  | 25-Jul-05 | 5071509   | BD      |       |
| Volatile   | Organic Compounds by SW84   | 46 8260B        | Prepared by meth | od SW8   | 46 5030 Soil        | (high leve | el)       |           |         | R-05, |
| 71-43-2    | Benzene                     | BRL             | 280 μg/kg dry    | 100      | SW846 8260B         | 27-Jul-05  | 28-Jul-05 | 5071663   | tim     | VOCIO |
| 100-41-4   | Ethylbenzene                | BRL             | 280 μg/kg dry    | 100      | u                   |            | "         | n         | n       |       |
| 1634-04-4  | Methyl tert-butyl ether     | BRL             | 280 μg/kg dry    | 100      | n                   | "          | н         | **        | "       |       |
| 91-20-3    | Naphthalene                 | 1,590           | 280 μg/kg dry    | 100      | 19                  | "          | 11        | н         | 11      |       |
| 108-88-3   | Toluene                     | BRL             | 280 μg/kg dry    | 100      | 11                  | **         | n         | 0         | "       |       |
| 95-63-6    | 1,2,4-Trimethylbenzene      | 3,560           | 280 μg/kg dry    | 100      | 10                  | "          | H         | n         | **      |       |
| 108-67-8   | 1,3,5-Trimethylbenzene      | 1,420           | 280 μg/kg dry    | 100      | 11                  | H          | . "       | "         | n       |       |
| 1330-20-7  | m,p-Xylene                  | 2,250           | 561 μg/kg dry    | 100      | It                  | "          | n         | "         | 11      |       |
| 95-47-6    | o-Xylene                    | BRL             | 280 μg/kg dry    | 100      | "                   | "          | **        | "         | *       |       |
| Surrogate  | e recoveries:               |                 |                  |          |                     |            |           |           |         |       |
| 460-00-4   | 4-Bromofluorobenzene        | 108             | 70-130 %         |          | II.                 | II         | 10        | 11        | 0       |       |
| 2037-26-5  | Toluene-d8                  | 97.6            | 70-130 %         |          | u                   | U          | "         | 11        | u       |       |
| 17060-07-0 | 1,2-Dichloroethane-d4       | 116             | 70-130 %         |          | n                   | u          | "         | 11        | *1      |       |
| 1868-53-7  | Dibromofluoromethane        | 103             | 70-130 %         |          | U                   | u          | 11        | "         | *1      |       |
| Extracta   | able Petroleum Hydrocarbo   | ns              |                  |          |                     |            |           |           |         |       |
| Diesel R   | ange Organics               |                 | Prepared by meth | od SW8   | 46 3545A            |            |           |           |         |       |
| 68476-30-2 | Fuel Oil #2                 | 864             | 34.9 mg/kg dry   | 1        | 8015BM/ME4.1<br>.25 | 28-Jul-05  | 01-Aug-05 | 5071700   | KG      |       |
| 68476-31-3 | Fuel Oil #4                 | BRL             | 34.9 mg/kg dry   | 1        | 11                  | H          | **        | 11        | **      |       |
| 68553-00-4 | Fuel Oil #6                 | BRL             | 34.9 mg/kg dry   | 1        | ii                  | н          | "         | **        | 10      |       |
| M09800000  | Motor Oil                   | BRL             | 34.9 mg/kg dry   | 1        | **                  | н          | 11        | 11        | 11      |       |
| J00100000  | Aviation Fuel               | BRL             | 34.9 mg/kg dry   | 1        | **                  | n          | 11        | 11        | 11      |       |
|            | Unidentified                | BRL             | 34.9 mg/kg dry   | 1        | **                  | n          |           | 19        | n       |       |
|            | Other Oil                   | BRL             | 34.9 mg/kg dry   | 1        | 11                  | **         | H         | n         | ti .    |       |
|            | Diesel Range Organics (DRO) | 864             | 34.9 mg/kg dry   | 1        |                     | **         | u         | 11        |         |       |
| Surrogate  | e recoveries:               |                 |                  |          |                     |            |           |           |         |       |
| _          | 1-Chlorooctadecane          | 124             | 40-140 %         |          | 11                  | H          | "         | <b>51</b> | "       |       |
| General    | Chemistry Parameters        |                 |                  |          |                     |            |           |           |         |       |
|            | % Solids                    | 74.9            | %                | 1        | SM2540 G<br>Mod.    | 29-Jul-05  | 29-Jul-05 | 5071795   | BD      |       |

Matrix Soil Collection Date/Time 18-Jul-05 15:00

| CAS No.    | Analyte(s)                  | Result          | *RDL/Units       | Dilution | Method Ref.         | Prepared   | Analyzed  | Batch   | Analyst | Flag |
|------------|-----------------------------|-----------------|------------------|----------|---------------------|------------|-----------|---------|---------|------|
| Volatile   | Organic Compounds           |                 |                  |          |                     |            |           |         |         |      |
|            | VOC Extraction              | Field extracted | N/A              | 1        | VOC                 | 25-Jul-05  | 25-Jul-05 | 5071509 | BD      |      |
| Volatile - | Organic Compounds by SW84   | 46 8260B        | Prepared by meth | od SW8   | 46 5030 Soil        | (high leve | el)       |         |         |      |
| 71-43-2    | Benzene                     | BRL             | 157 μg/kg dry    | 50       | SW846 8260B         | 29-Jul-05  | 29-Jul-05 | 5071804 | tim     |      |
| 100-41-4   | Ethylbenzene                | 495             | 157 µg/kg dry    | 50       | н                   | 0          | 11        | 11      | u       |      |
| 1634-04-4  | Methyl tert-butyl ether     | BRL             | 157 μg/kg dry    | 50       | **                  | u          | 11        | 11      | u       |      |
| 91-20-3    | Naphthalene                 | 1,300           | 157 μg/kg dry    | 50       | "                   | U          | "         | 19      | ti      |      |
| 108-88-3   | Toluene                     | 281             | 157 μg/kg dry    | 50       | **                  | H          | 11        | 11      | n       |      |
| 95-63-6    | 1,2,4-Trimethylbenzene      | 3,880           | 157 μg/kg dry    | 50       | "                   | 0          | 11        | •       |         |      |
| 108-67-8   | 1,3,5-Trimethylbenzene      | 1,540           | 157 μg/kg dry    | 50       | "                   | 11         | n         | **      | U       |      |
| 1330-20-7  | m,p-Xylene                  | 2,400           | 314 µg/kg dry    | 50       | "                   | "          | *1        | +1      | "       |      |
| 95-47-6    | o-Xylene                    | 181             | 157 μg/kg dry    | 50       | H                   | "          | "         | H       | 11      |      |
| Surrogate  | recoveries:                 |                 |                  |          |                     |            |           |         |         |      |
| 460-00-4   | 4-Bromofluorobenzene        | 105             | 70-130 %         |          | n                   | "          | 11        | 11      | "       |      |
| 2037-26-5  | Toluene-d8                  | 95.0            | 70-130 %         |          | "                   | "          | "         | 11      | 0       |      |
| 17060-07-0 | 1,2-Dichloroethane-d4       | 102             | 70-130 %         |          | "                   | ti         | "         | 16      | U       |      |
| 1868-53-7  | Dibromofluoromethane        | 97.0            | 70-130 %         |          | **                  | "          | . "       | 11      | "       |      |
| Extracta   | ible Petroleum Hydrocarboi  | ns              |                  |          |                     |            |           |         |         |      |
| Diesel R   | ange Organics               |                 | Prepared by meth | od SW8   | 46 3545A            |            |           |         |         |      |
| 68476-30-2 | Fuel Oil #2                 | 1,400           | 33.1 mg/kg dry   | 1        | 8015BM/ME4.1<br>.25 | 28-Jul-05  | 01-Aug-05 | 5071700 | KG      |      |
| 68476-31-3 | Fuel Oil #4                 | BRL             | 33.1 mg/kg dry   | 1        | u                   | ii .       | "         | **      | n       |      |
| 68553-00-4 | Fuel Oil #6                 | BRL             | 33.1 mg/kg dry   | 1        | "                   | ti         | "         | **      | 11      |      |
| M09800000  | Motor Oil                   | BRL             | 33.1 mg/kg dry   | 1        | "                   | **         | 11        | 11      | n       |      |
| J00100000  | Aviation Fuel               | BRL             | 33.1 mg/kg dry   | 1        | 41                  | **         | ıı        | n       | "       |      |
|            | Unidentified                | BRL             | 33.1 mg/kg dry   | 1        | . 11                | **         | "         | 11      | "       |      |
|            | Other Oil                   | BRL             | 33.1 mg/kg dry   | 1        | 10                  | 11         | u         | 11      | u       |      |
|            | Diesel Range Organics (DRO) | 1,400           | 33.1 mg/kg dry   | 1        | I+                  | 11         | (1        |         | "       |      |
| Surrogate  | recoveries:                 |                 |                  |          |                     |            |           |         |         |      |
| 3386-33-2  | 1-Chlorooctadecane          | 174             | 40-140 %         |          | Ħ                   | "          | **        | "       | 11      | S-02 |
| General    | Chemistry Parameters        |                 |                  |          |                     |            |           |         |         |      |
|            | % Solids                    | 80.2            | %                | 1        | SM2540 G<br>Mod.    | 29-Jul-05  | 29-Jul-05 | 5071795 | BD      |      |

Matrix Soil Collection Date/Time 18-Jul-05 15:30

| CAS No.    | Analyte(s)                       | Result          | *RDL/Units       | Dilution | Method Ref.         | Prepared   | Analyzed  | Batch   | Analyst Fla |
|------------|----------------------------------|-----------------|------------------|----------|---------------------|------------|-----------|---------|-------------|
| Volatile   | Organic Compounds                |                 | •                |          | •                   |            |           |         |             |
|            | VOC Extraction                   | Field extracted | N/A              | 1        | VOC                 | 25-Jul-05  | 25-Jul-05 | 5071509 | BD          |
| Volatile ( | Organic Compounds by SW84        | 16 8260B        | Prepared by meth | od SW8   | 46 5030 Soil        | (high leve | 1)        |         |             |
| 71-43-2    | Benzene                          | BRL             | 139 µg/kg dry    | 50       | SW846 8260B         | 29-Jul-05  | 29-Jul-05 | 5071804 | tim         |
| 100-41-4   | Ethylbenzene                     | BRL             | 139 μg/kg dry    | 50       | ."                  | "          | "         | "       | n           |
| 1634-04-4  | Methyl tert-butyl ether          | 185             | 139 μg/kg dry    | 50       | **                  | "          | "         | 11      | n           |
| 91-20-3    | Naphthalene                      | BRL             | 139 µg/kg dry    | 50       | **                  | **         | **        | 11      |             |
| 108-88-3   | Toluene                          | BRL             | 139 µg/kg dry    | 50       | *1                  | "          | ıı        | u       | 11          |
| 95-63-6    | 1,2,4-Trimethylbenzene           | 325             | 139 µg/kg dry    | 50       | "                   | "          | "         | "       | 11          |
| 108-67-8   | 1,3,5-Trimethylbenzene           | 149             | 139 µg/kg dry    | 50       | n                   | "          | **        | 0       | **          |
| 1330-20-7  | m,p-Xylene                       | BRL             | 279 μg/kg dry    | 50       | "                   | "          | 11        | 0       | "           |
| 95-47-6    | o-Xylene                         | BRL             | 139 µg/kg dry    | 50       | n                   | "          |           | n       | II .        |
| Surrogate  | recoveries:                      |                 |                  |          |                     |            |           |         |             |
| 60-00-4    | 4-Bromofluorobenzene             | 106             | 70-130 %         |          | n                   | "          | "         | "       | U           |
| 2037-26-5  | Toluene-d8                       | 95.6            | 70-130 %         |          | **                  | U          | ıı        | 11      | n           |
| 17060-07-0 | 1,2-Dichloroethane-d4            | 105             | 70-130 %         |          | "                   | u          | 11        | #       | n           |
| 1868-53-7  | Dibromofluoromethane             | 97.6            | 70-130 %         |          | Ħ                   | "          | ,         | 11      | "           |
| Extracta   | ible Petroleum Hydrocarboi       | 18              |                  |          |                     |            |           |         |             |
| Diesel Ro  | ange Organics                    |                 | Prepared by meth | od SW8   | 46 3545A            |            |           |         |             |
| 58476-30-2 | Fuel Oil #2                      | 180             | 34.1 mg/kg dry   | 1        | 8015BM/ME4.1<br>.25 | 28-Jul-05  | 01-Aug-05 | 5071700 | KG          |
| 58476-31-3 | Fuel Oil #4                      | BRL             | 34.1 mg/kg dry   | 1        | U                   | q          | 11        | н       | O .         |
| 8553-00-4  | Fuel Oil #6                      | BRL             | 34.1 mg/kg dry   | 1        | 11                  | "          | 11        | "       | ŧI          |
| M09800000  | Motor Oil                        | BRL             | 34.1 mg/kg dry   | 1        | п                   | "          | 11        | н       | ŧI          |
| 000001000  | Aviation Fuel                    | BRL             | 34.1 mg/kg dry   | 1        | "                   | **         | 11        | ŧI      | **          |
|            | Unidentified                     | BRL             | 34.1 mg/kg dry   | 1        | н                   | "          | **        | 11      | 11          |
|            | Other Oil                        | BRL             | 34.1 mg/kg dry   | 1        | н                   | 11         | 11        | 11      | IJ          |
|            | Diesel Range Organics (DRO)      | 180             | 34.1 mg/kg dry   | 1        | 11                  | "          | 11        |         | 0           |
| Surrogate  | recoveries:                      |                 |                  |          |                     |            |           |         |             |
| 3386-33-2  | 1-Chlorooctadecane               | 66.7            | 40-140 %         |          | II                  | 11         | "         | H       | "           |
| General    | Chemistry Parameters<br>% Solids | 78.0            | %                | 1        | SM2540 G<br>Mod.    | 29-Jul-05  | 29-Jul-05 | 5071795 | BD          |

Matrix Soil Collection Date/Time 19-Jul-05 09:30

| <del></del><br>Volatile |                             |                 |                  |        |                     |            |           |         |      | Flag  |
|-------------------------|-----------------------------|-----------------|------------------|--------|---------------------|------------|-----------|---------|------|-------|
|                         | Organic Compounds           |                 |                  |        |                     |            |           |         |      |       |
|                         | VOC Extraction              | Field extracted | N/A              | 1      | VOC                 | 25-Jul-05  | 25-Jul-05 | 5071509 | BD   |       |
| <u>Volatile</u>         | Organic Compounds by SW84   | 16 8260B        | Prepared by meth | od SW8 | 46 5030 Soil        | (high leve | 1)        |         |      | VOCIO |
| 71-43-2                 | Benzene                     | BRL             | 5610 μg/kg dry   | 2500   | SW846 8260B         | 27-Jul-05  | 28-Jul-05 | 5071663 | tim  |       |
| 100-41-4                | Ethylbenzene                | 79,100          | 5610 μg/kg dry   | 2500   | 11                  | **         | n         | "       | **   |       |
| 1634-04-4               | Methyl tert-butyl ether     | BRL             | 5610 μg/kg dry   | 2500   | 11                  | 11         | n         | u       | 11   |       |
| 91-20-3                 | Naphthalene                 | 118,000         | 5610 μg/kg dry   | 2500   | 11                  | *1         | n         | "       | **   |       |
| 108-88-3                | Toluene                     | 123,000         | 5610 μg/kg dry   | 2500   | II.                 | * 11       | 11        | u       | 11   |       |
| 95-63-6                 | 1,2,4-Trimethylbenzene      | 684,000         | 5610 μg/kg dry   | 2500   | 11                  | 11         | H         | "       | **   |       |
| 108-67-8                | 1,3,5-Trimethylbenzene      | 217,000         | 5610 μg/kg dry   | 2500   | "                   | 11         | 0         | n       | *1   |       |
| 1330-20-7               | m,p-Xylene                  | 506,000         | 11200 μg/kg dry  | 2500   | u                   | 11         | n         | ŧı      | 11   |       |
| 95-47-6                 | o-Xylene                    | 248,000         | 5610 μg/kg dry   | 2500   | 10                  | #          | n         | u       | *1   |       |
| Surrogat                | e recoveries:               |                 |                  |        |                     |            |           |         |      |       |
| 460-00-4                | 4-Bromofluorobenzene        | 101             | 70-130 %         |        | 19                  | 11         | *1        | *1      | 11   |       |
| 2037-26-5               | Toluene-d8                  | 99.2            | 70-130 %         |        | U                   | 11         | Ħ         | *1      | u    |       |
| 17060-07-0              | 1,2-Dichloroethane-d4       | 113             | 70-130 %         |        | U                   | 11         | *1        | **      | U    |       |
| 1868-53-7               | Dibromofluoromethane        | 103             | 70-130 %         |        | U                   | 11         | R         | н       | U    |       |
| Extract                 | able Petroleum Hydrocarboi  | 18              |                  |        |                     |            |           |         |      |       |
| Diesel R                | Range Organics              |                 | Prepared by meth | od SW8 | 46 3545A            |            |           |         |      |       |
| 68476-30-2              | Fuel Oil #2                 | Calculated as   | 30.9 mg/kg dry   | 1      | 8015BM/ME4.1<br>.25 | 28-Jul-05  | 01-Aug-05 | 5071700 | KG   |       |
| 68476-31-3              | Fuel Oil #4                 | BRL             | 30.9 mg/kg dry   | 1      | *                   | **         |           | u       | "    |       |
| 68553-00-4              | Fuel Oil #6                 | BRL             | 30.9 mg/kg dry   | 1      | "                   | 11         | U         | n       | **   |       |
| M09800000               | Motor Oil                   | BRL             | 30.9 mg/kg dry   | 1      | **                  | 11         | ч.        | **      | ".   |       |
| J00100000               | Aviation Fuel               | BRL             | 30.9 mg/kg dry   | 1      | "                   | **         | **        | ţi.     | 11   |       |
|                         | Unidentified                | 14,300          | 30.9 mg/kg dry   | 1      | **                  | 11         | **        | **      |      |       |
|                         | Other Oil                   | Calculated as   | 30.9 mg/kg dry   | 1      | "                   | n          | . "       | H       | ŧı   |       |
|                         | Diesel Range Organics (DRO) | 14,300          | 30.9 mg/kg dry   | 1      | "                   | 11         | н         | "       | ti . |       |
| Surrogat                | e recoveries:               |                 |                  |        |                     |            |           |         |      |       |
| 3386-33-2               | I-Chlorooctadecane          | 3580            | 40-140 %         |        | 0 '                 | "          | 11        | "       | 11   | S-02  |
| Genera                  | l Chemistry Parameters      |                 |                  |        |                     |            |           |         |      |       |
|                         | % Solids                    | 84.9            | %                | 1      | SM2540 G<br>Mod.    | 29-Jul-05  | 29-Jul-05 | 5071795 | BD   |       |
|                         | Fractional Organic Carbon   | 0.0151          | 0.0001 N/A       | 1      | SW846 9060          | 02-Aug-05  | 02-Aug-05 | 5080235 | AW   |       |

Matrix Soil Collection Date/Time 19-Jul-05 10:00

| CAS No.    | Analyte(s)                  | Result          | *RDL/Units       | Dilution | Method Ref.         | Prepared   | Analyzed  | Batch   | Analyst    | Flag |
|------------|-----------------------------|-----------------|------------------|----------|---------------------|------------|-----------|---------|------------|------|
| Volatile   | Organic Compounds           |                 |                  |          |                     |            | •         |         |            |      |
|            | VOC Extraction              | Field extracted | N/A              | 1        | VOC                 | 25-Jul-05  | 25-Jul-05 | 5071509 | BD         |      |
| Volatile - | Organic Compounds by SW84   | 16 8260B        | Prepared by meth | od SW8   | 46 5030 Soil        | (high leve | 1)        |         |            | R-05 |
| 71-43-2    | Benzene                     | 6,080           | 2300 μg/kg dry   | 1000     | SW846 8260B         | 29-Jul-05  | 29-Jul-05 | 5071804 | tim        |      |
| 100-41-4   | Ethylbenzene                | 13,600          | 2300 μg/kg dry   | 1000     | 19                  | **         | n         | 11      | *1         |      |
| 1634-04-4  | Methyl tert-butyl ether     | 3,780           | 2300 μg/kg dry   | 1000     | 19                  | **         | **        | *1      | 11         |      |
| 91-20-3    | Naphthalene                 | 8,040           | 2300 μg/kg dry   | 1000     | le .                | **         | u         | n       | 11         |      |
| 108-88-3   | Toluene                     | 24,400          | 2300 μg/kg dry   | 1000     | 11                  | •          | H         | Ħ       | •          |      |
| 95-63-6    | 1,2,4-Trimethylbenzene      | 47,200          | 2300 μg/kg dry   | 1000     | 10                  | #          | u         | n       | 11         |      |
| 108-67-8   | 1,3,5-Trimethylbenzene      | 15,700          | 2300 μg/kg dry   | 1000     | 19                  | **         | n         | n       | 11         |      |
| 1330-20-7  | m,p-Xylene                  | 66,500          | 4600 μg/kg dry   | 1000     | 18                  | н          | u         | n       | **         |      |
| 95-47-6    | o-Xylene                    | 25,300          | 2300 μg/kg dry   | 1000     | H                   | **         | U         | "       | **         |      |
| Surrogate  | recoveries:                 |                 |                  |          |                     |            |           |         |            |      |
| 460-00-4   | 4-Bromofluorobenzene        | 101             | 70-130 %         |          | **                  | Ħ          | n         | 0       | н          |      |
| 2037-26-5  | Toluene-d8                  | 99.2            | 70-130 %         |          |                     |            | **        | n       | 11         |      |
| 17060-07-0 | 1,2-Dichloroethane-d4       | 104             | 70-130 %         |          | II .                | u          | 11        | **      | **         |      |
| 1868-53-7  | Dibromofluoromethane        | 95.6            | 70-130 %         |          | ,11                 | "          | . "       | **      | "          |      |
| Extracta   | able Petroleum Hydrocarboi  | ns              |                  |          |                     |            |           |         |            |      |
| Diesel R   | ange Organics               |                 | Prepared by meth | od SW8   | 46 3545A            |            |           |         |            |      |
|            | Fuel Oil #2                 | Calculated as   | 32.8 mg/kg dry   | 1        | 8015BM/ME4.1<br>.25 | 28-Jul-05  | 01-Aug-05 | 5071700 | KG         |      |
| 68476-31-3 | Fuel Oil #4                 | BRL             | 32.8 mg/kg dry   | . 1      | u                   | n          | 'n        | **      | 0          |      |
| 68553-00-4 | Fuel Oil #6                 | BRL             | 32.8 mg/kg dry   | 1        | u                   | U          | n         | **      | "          |      |
| M09800000  | Motor Oil                   | BRL             | 32.8 mg/kg dry   | 1        | "                   | n          | 11        | **      | 11         |      |
| J00100000  | Aviation Fuel               | BRL             | 32.8 mg/kg dry   | 1        | "                   | a          | If        | "       | ti ti      |      |
|            | Unidentified                | 725             | 32.8 mg/kg dry   | 1        | **                  | 11         | u         | u       | <b>(</b> I |      |
|            | Other Oil                   | Calculated as   | 32.8 mg/kg dry   | 1        | 11                  | Ħ          | ŧ         | ti      | **         |      |
|            | Diesel Range Organics (DRO) | 725             | 32.8 mg/kg dry   | 1        | II                  | 10         | e         | 11      | 11         |      |
| Surrogate  | e recoveries:               |                 |                  |          |                     |            |           |         |            |      |
| -          | 1-Chlorooctadecane          | 206             | 40-140 %         |          | ti                  | u          | 11        | 17      | 11         | S-02 |
| General    | Chemistry Parameters        |                 |                  |          |                     |            |           |         |            |      |
|            | % Solids                    | 79.6            | %                | 1        | SM2540 G<br>Mod.    | 29-Jul-05  | 29-Jul-05 | 5071795 | BD         |      |

Matrix Soil Collection Date/Time 19-Jul-05 08:00

| CAS No.    | Analyte(s)                  | Result           | *RDL/Units       | Dilution | Method Ref.         | Prepared   | Analyzed  | Batch   | Analyst | Flag |
|------------|-----------------------------|------------------|------------------|----------|---------------------|------------|-----------|---------|---------|------|
| Volatile   | Organic Compounds           |                  |                  |          |                     | •          | •         |         |         |      |
|            | VOC Extraction              | Field extracted  | N/A              | 1        | VOC                 | 25-Jul-05  | 25-Jul-05 | 5071509 | BD      |      |
| Volatile   | Organic Compounds by SW84   | 46 8260 <u>B</u> | Prepared by meth | od SW8   | 46 5030 Soil        | (high leve | l)        |         |         | R-05 |
| 71-43-2    | Benzene                     | 2,250            | 1170 μg/kg dry   | 500      | SW846 8260B         | 29-Jul-05  | 29-Jul-05 | 5071804 | tim     | •    |
| 100-41-4   | Ethylbenzene                | 4,250            | 1170 μg/kg dry   | 500      | ij                  | ıı .       | **        | 11      | ıı      |      |
| 1634-04-4  | Methyl tert-butyl ether     | BRL              | 1170 µg/kg dry   | 500      | u                   | u          | и         | H       | u       |      |
| 91-20-3    | Naphthalene                 | 11,900           | 1170 μg/kg dry   | 500      | U                   | II         | It        | IT      | n       |      |
| 108-88-3   | Toluene                     | 4,380            | 1170 µg/kg dry   | 500      | II                  | n          | It        | 11      | II .    |      |
| 95-63-6    | 1,2,4-Trimethylbenzene      | 38,200           | 1170 µg/kg dry   | 500      | H                   | н          | 11        | 11      | II.     |      |
| 108-67-8   | 1,3,5-Trimethylbenzene      | 11,800           | 1170 μg/kg dry   | 500      | u                   | n          | IP        | 11      | n       |      |
| 1330-20-7  | m,p-Xylene                  | 22,600           | 2350 μg/kg dry   | 500      | H                   | "          | **        | #       | 11      |      |
| 95-47-6    | o-Xylene                    | 7,180            | 1170 μg/kg dry   | 500      | 11                  | 10         | - 11      | 11      | "       |      |
| Surrogate  | e recoveries:               |                  |                  |          |                     |            |           |         |         |      |
| 460-00-4   | 4-Bromofluorobenzene        | 102              | 70-130 %         |          | n                   | 11         | 11        | 11      | II.     |      |
| 2037-26-5  | Toluene-d8                  | 101              | 70-130 %         |          | H                   | 11         | **        | **      | 11      |      |
| 17060-07-0 | 1,2-Dichloroethane-d4       | 104              | 70-130 %         |          | 0                   | II.        | **        | *1      | II      |      |
| 1868-53-7  | Dibromofluoromethane        | 96.0             | 70-130 %         |          | n                   | If         | u         | **      | n       |      |
| Extracta   | able Petroleum Hydrocarbo   | ns               |                  |          |                     |            |           |         |         |      |
| Diesel R   | ange Organics               |                  | Prepared by meth | od SW8   | 46 3545A            |            |           |         |         |      |
| 68476-30-2 | Fuel Oil #2                 | Calculated as    | 28.3 mg/kg dry   | 1        | 8015BM/ME4.1<br>.25 | 28-Jul-05  | 01-Aug-05 | 5071700 | KG      |      |
| 68476-31-3 | Fuel Oil #4                 | BRL              | 28.3 mg/kg dry   | 1        | 11                  | "          | U         | u       | Ħ       |      |
| 68553-00-4 | Fuel Oil #6                 | BRL              | 28.3 mg/kg dry   | 1        | H                   | "          | n         | . 0     | 11      |      |
| M09800000  | Motor Oil                   | BRL              | 28.3 mg/kg dry   | 1        | U                   | u          | 11        | *1      | ıı      |      |
| J00100000  | Aviation Fuel               | BRL              | 28.3 mg/kg dry   | 1        | n                   | U          | "         | "       | 11      |      |
|            | Unidentified                | 4,630            | 28.3 mg/kg dry   | 1        | **                  | Ħ          | U         | "       | H       |      |
|            | Other Oil                   | Calculated as    | 28.3 mg/kg dry   | 1        | H                   | . 11       | U         | "       | **      |      |
|            | Diesel Range Organics (DRO) | 4,630            | 28.3 mg/kg dry   | 1        | n                   | "          | **        | "       | "       |      |
| Surrogate  | e recoveries:               |                  |                  |          |                     |            |           |         |         |      |
| 3386-33-2  | I-Chlorooctadecane          | 811              | 40-140 %         |          | ti                  | "          | 11        | "       | H       | S-02 |
| General    | Chemistry Parameters        |                  |                  |          |                     |            |           |         |         |      |
|            | % Solids                    | 92.8             | %                | 1        | SM2540 G<br>Mod.    | 29-Jul-05  | 29-Jul-05 | 5071795 | BD      |      |
|            | Fractional Organic Carbon   | 0.0122           | 0.0001 N/A       | 1        | SW846 9060          | 02-Aug-05  | 02-Aug-05 | 5080235 | AW      |      |

Matrix Soil Collection Date/Time 19-Jul-05 08:15

| CAS No.         | Analyte(s)                  | Result          | *RDL/Units       | Dilution | Method Ref.         | Prepared   | Analyzed  | Batch   | Analysi | Flag  |
|-----------------|-----------------------------|-----------------|------------------|----------|---------------------|------------|-----------|---------|---------|-------|
| Volatile        | Organic Compounds           |                 |                  |          |                     |            |           |         |         |       |
|                 | VOC Extraction              | Field extracted | N/A              | 1        | VOC                 | 25-Jul-05  | 25-Jul-05 | 5071509 | BD      |       |
| <u>Volatile</u> | Organic Compounds by SW84   | 46 8260B        | Prepared by meth | od SW8   | 46 5030 Soil        | (high leve | 1)        |         |         | VOC10 |
| 71-43-2         | Benzene                     | 21,600          | 2490 μg/kg dry   | 1000     | SW846 8260B         | 28-Jul-05  | 28-Jul-05 | 5071721 | RLJ     |       |
| 100-41-4        | Ethylbenzene                | 127,000         | 2490 μg/kg dry   | 1000     | 11                  | **         | U         | n       | 11      |       |
| 1634-04-4       | Methyl tert-butyl ether     | BRL             | 2490 μg/kg dry   | 1000     | H                   | **         | "         | 0       | "       |       |
| 91-20-3         | Naphthalene                 | 87,500          | 2490 μg/kg dry   | 1000     | **                  | **         | U         | n       | **      |       |
| 108-88-3        | Toluene                     | 129,000         | 2490 μg/kg dry   | 1000     | 11                  | "          | U         | n       | #       |       |
| 95-63-6         | 1,2,4-Trimethylbenzene      | 478,000         | 2490 μg/kg dry   | 1000     | n                   | "          | u         | 11      | "       |       |
| 108-67-8        | 1,3,5-Trimethylbenzene      | 157,000         | 2490 μg/kg dry   | 1000     | Ħ                   |            | "         | II      | ŧi      |       |
| 1330-20-7       | m,p-Xylene                  | 496,000         | 4980 μg/kg dry   | 1000     |                     | "          | "         | n       | **      |       |
| 95-47-6         | o-Xylene                    | 156,000         | 2490 μg/kg dry   | 1000     | **                  | "          | U         | u       | n       |       |
| <br>Surrogate   | recoveries:                 |                 |                  |          |                     |            |           |         |         |       |
| 460-00-4        | 4-Bromofluorobenzene        | 108             | 70-130 %         |          | **                  | "          | II.       | n       | "       |       |
| 2037-26-5       | Toluene-d8                  | 93.0            | 70-130 %         |          | **                  | "          | O         | II      | н       |       |
| 17060-07-0      | 1,2-Dichloroethane-d4       | 102             | 70-130 %         |          | 14                  | "          | n         | "       | **      |       |
| 1868-53-7       | Dibromofluoromethane        | 98.4            | 70-130 %         |          | 11                  | 11         | u         | Ħ       | "       |       |
| Extracta        | able Petroleum Hydrocarbo   | ns              |                  |          |                     |            |           |         |         |       |
| Diesel_R        | ange Organics               |                 | Prepared by meth | od SW8   | 46 3545A            |            |           |         |         |       |
| 68476-30-2      | Fuel Oil #2                 | Calculated as   | 33.6 mg/kg dry   | 1        | 8015BM/ME4.1<br>.25 | 28-Jul-05  | 01-Aug-05 | 5071700 | KG      |       |
| 68476-31-3      | Fuel Oil #4                 | BRL             | 33.6 mg/kg dry   | 1        | n                   | O          | "         | "       | **      |       |
| 68553-00-4      | Fuel Oil #6                 | BRL             | 33.6 mg/kg dry   | 1        | **                  | ti .       | **        | 11      | "       |       |
| м09800000       | Motor Oil                   | BRL             | 33.6 mg/kg dry   | 1        | #1                  | *1         | 11        | 11      | 0       |       |
| J00100000       | Aviation Fuel               | BRL             | 33.6 mg/kg dry   | 1        | н                   | "          | "         | 11      | 11      |       |
|                 | Unidentified                | 17,700          | 33.6 mg/kg dry   | 1        | 11                  | 11         | 11        | ti      | **      |       |
|                 | Other Oil                   | Calculated as   | 33.6 mg/kg dry   | 1        | u                   |            | 11        | u       | **      |       |
|                 | Diesel Range Organics (DRO) | 17,700          | 33.6 mg/kg dry   | 1        | tt                  | "          | 11        | #1      | **      |       |
| Surrogate       | recoveries:                 |                 |                  |          |                     |            |           |         |         |       |
| 3386-33-2       | 1-Chlorooctadecane          | 3020            | 40-140 %         |          | 11                  | u          | 19        | 11      | 0       | S-02  |
| General         | Chemistry Parameters        |                 |                  |          |                     |            |           |         |         |       |
|                 | % Solids                    | 81.0            | %                | 1        | SM2540 G<br>Mod.    | 29-Jul-05  | 29-Jul-05 | 5071795 | BD      |       |
|                 | Fractional Organic Carbon   | 0.0082          | 0.0001 N/A       | 1        | SW846 9060          | 02-Aug-05  | 02-Aug-05 | 5080235 | AW      |       |

| Analyte(s)                          | Result         | *RDL Units                     | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD | RPD<br>Limit | Flag |
|-------------------------------------|----------------|--------------------------------|----------------|------------------|------------|----------------|-----|--------------|------|
| Batch 5071621 - SW846 5035A So      | il (low level) |                                |                |                  |            |                |     |              |      |
| Blank (5071621-BLK1)                |                |                                | Prepared       | & Analyze        | d: 27-Jul- | 05             |     |              |      |
| Acetone                             | BRL            | 100 μg/kg wet                  |                |                  |            |                |     |              |      |
| Acrylonitrile                       | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| Benzene                             | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| Bromobenzene                        | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| Bromochloromethane                  | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| Bromodichloromethane                | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| Bromoform                           | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| Bromomethane                        | BRL            | 10.0 μg/kg wet                 |                |                  |            |                |     |              |      |
| 2-Butanone (MEK)                    | BRL            | 50.0 μg/kg wet                 |                |                  |            |                |     |              |      |
| n-Butylbenzene                      | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| sec-Butylbenzene                    | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| tert-Butylbenzene                   | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| Carbon disulfide                    | BRL            | 25.0 μg/kg wet                 |                |                  |            |                |     |              |      |
| Carbon tetrachloride                | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| Chlorobenzene                       | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| Chloroethane                        | BRL            | 10.0 μg/kg wet                 |                |                  |            |                |     |              |      |
| Chloroform                          | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| Chloromethane                       | BRL            | 10.0 μg/kg wet                 |                |                  |            |                |     |              |      |
| 2-Chlorotoluene                     | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| 4-Chlorotoluene                     | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| 1,2-Dibromo-3-chloropropane         | BRL            | 10.0 μg/kg wet                 |                |                  |            |                |     |              |      |
| Dibromochloromethane                | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| 1,2-Dibromoethane (EDB)             | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| Dibromomethane                      | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| 1,2-Dichlorobenzene                 | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| 1,3-Dichlorobenzene                 | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| 1,4-Dichlorobenzene                 | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| Dichlorodifluoromethane (Freon12)   | BRL            | 10.0 μg/kg wet                 |                |                  |            |                |     |              |      |
| 1,1-Dichloroethane                  | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| 1,2-Dichloroethane                  | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| 1,1-Dichloroethene                  | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| cis-1,2-Dichloroethene              | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| trans-1,2-Dichloroethene            | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| 1,2-Dichloropropane                 | BRL            | 5.0 μg/kg wet                  |                |                  | -          |                |     |              |      |
| 1,3-Dichloropropane                 | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| 2,2-Dichloropropane                 | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| 1,1-Dichloropropene                 | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| cis-1,3-Dichloropropene             | BRL            | 5.0 μg/kg wet<br>5.0 μg/kg wet |                |                  |            |                |     |              |      |
| trans-1,3-Dichloropropene           | BRL<br>BRL     | 5.0 µg/kg wet                  |                |                  |            |                |     |              |      |
| Ethylbenzene<br>Hexachlorobutadiene | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              | ,    |
| 2-Hexanone (MBK)                    | BRL            | 50.0 μg/kg wet                 |                |                  |            |                |     |              |      |
| Isopropylbenzene                    | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| 4-Isopropyltoluene                  | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| Methyl tert-butyl ether             | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| 4-Methyl-2-pentanone (MIBK)         | BRL            | 50.0 μg/kg wet                 |                |                  |            |                |     |              |      |
| Methylene chloride                  | BRL            | 50.0 μg/kg wet                 |                | ٠                |            |                |     |              |      |
| Naphthalene                         | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| n-Propylbenzene                     | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| Styrene                             | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| 1,1,1,2-Tetrachloroethane           | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| 1,1,2,2-Tetrachloroethane           | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| Tetrachloroethene                   | BRL            | 5.0 μg/kg wet                  |                |                  |            |                |     |              |      |
| Toluene                             | BRL            | 5.0 µg/kg wet                  |                |                  |            |                |     |              |      |

| Analyte(s)                              | Result         | *RDL Units     | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits | RPD | RPD<br>Limit | Flag |
|-----------------------------------------|----------------|----------------|----------------|------------------|-----------|----------------|-----|--------------|------|
| Batch 5071621 - SW846 5035A So          | il (low level) |                |                |                  |           |                |     |              |      |
| Blank (5071621-BLK1)                    |                |                | Prepared       | & Analyze        | d: 27-Jul | -05            |     |              |      |
| 1,2,3-Trichlorobenzene                  | BRL            | 5.0 μg/kg wet  |                |                  |           |                |     |              |      |
| 1,2,4-Trichlorobenzene                  | BRL            | 5.0 μg/kg wet  |                |                  |           |                |     |              |      |
| 1,1,1-Trichloroethane                   | BRL            | 5.0 μg/kg wet  |                |                  |           |                |     |              |      |
| 1,1,2-Trichloroethane                   | BRL            | 5.0 μg/kg wet  |                |                  |           |                |     |              |      |
| Trichloroethene                         | BRL            | 5.0 μg/kg wet  |                |                  |           |                |     |              |      |
| Trichlorofluoromethane (Freon 11)       | BRL            | 5.0 μg/kg wet  |                |                  |           |                |     |              |      |
| 1,2,3-Trichloropropane                  | BRL            | 5.0 μg/kg wet  |                |                  |           |                |     |              |      |
| 1,2,4-Trimethylbenzene                  | BRL            | 5.0 μg/kg wet  |                |                  |           |                |     |              |      |
| 1,3,5-Trimethylbenzene                  | BRL            | 5.0 μg/kg wet  |                |                  |           |                |     |              |      |
| Vinyl chloride                          | BRL            | 5.0 μg/kg wet  |                |                  |           |                |     |              |      |
| m,p-Xylene                              | BRL            | 10.0 μg/kg wet |                |                  |           |                |     |              |      |
| o-Xylene                                | BRL            | 5.0 μg/kg wet  |                |                  |           |                |     |              |      |
| Surrogate: 4-Bromofluorobenzene         | 45.7           | μg/kg wet      | 50.0           |                  | 91.4      | 70-130         |     |              |      |
| Surrogate: Toluene-d8                   | 49.1           | μg/kg wet      | 50.0           |                  | 98.2      | 70-130         |     |              |      |
| Surrogate: 1,2-Dichloroethane-d4        | 51.6           | μg/kg wet      | 50.0           |                  | 103       | 70-130         |     |              |      |
| Surrogate: Dibromofluoromethane         | 52.8           | μg/kg wet      | 50.0           |                  | 106       | 70-130         |     |              |      |
| LCS (5071621-BS1)                       |                | , 5 5          | Prepared       | & Analyze        | d: 27-Jul | -05            |     |              |      |
| Acetone                                 | 16.6           | μg/kg wet      | 20.0           |                  | 83.0      | 19.4-217       |     |              |      |
| Acrylonitrile                           | 13.3           | μg/kg wet      | 20.0           |                  | 66.5      | 70-130         |     |              | QC-1 |
| Benzene                                 | 18.3           | μg/kg wet      | 20.0           |                  | 91.5      | 70-130         |     |              | -    |
| Bromobenzene                            | 21.6           | μg/kg wet      | 20.0           |                  | 108       | 70-130         |     |              |      |
| Bromochloromethane                      | 19.2           | μg/kg wet      | 20.0           |                  | 96.0      | 70-130         |     |              |      |
| Bromodichloromethane                    | 21.2           | μg/kg wet      | 20.0           |                  | 106       | 70-130         |     |              |      |
| Bromoform                               | 18.4           | μg/kg wet      | 20.0           |                  | 92.0      | 70-130         |     |              |      |
| Bromomethane                            | 17.4           | μg/kg wet      | 20.0           |                  | 87.0      | 48.6-171       |     |              |      |
| 2-Butanone (MEK)                        | 8.8            | μg/kg wet      | 20.0           |                  | 44.0      | 16.5-153       |     |              |      |
| n-Butylbenzene                          | 20.2           | μg/kg wet      | 20.0           |                  | 101       | 70-130         |     |              |      |
| sec-Butylbenzene                        | 22.2           | μg/kg wet      | 20.0           |                  | 111       | 70-130         |     |              |      |
| tert-Butylbenzene                       | 22.4           | μg/kg wet      | 20.0           |                  | 112       | 70-130         |     |              |      |
| Carbon disulfide                        | 18.8           | μg/kg wet      | 20.0           |                  | 94.0      | 70-130         |     |              |      |
| Carbon tetrachloride                    | 24.8           | μg/kg wet      | 20.0           |                  | 124       | 70-130         |     |              |      |
| Chlorobenzene                           | 21.2           | μg/kg wet      | 20.0           |                  | 106       | 70-130         |     |              |      |
|                                         | 21.9           | μg/kg wet      | 20.0           |                  | 110       | 68.8-140       |     |              |      |
| Chloroform                              | 18.1           | μg/kg wet      | 20.0           |                  | 90.5      | 70-130         |     |              |      |
| Chloroform Chloromethane                | 17.6           | μg/kg wet      | 20.0           |                  | 88.0      | 70-130         |     |              |      |
| 2-Chlorotoluene                         | 20.5           | μg/kg wet      | 20.0           |                  | 102       | 70-130         |     |              |      |
| 4-Chlorotoluene                         | 20.6           | μg/kg wet      | 20.0           |                  | 103       | 70-130         |     |              |      |
| 1,2-Dibromo-3-chloropropane             | 17.6           | μg/kg wet      | 20.0           |                  | 88.0      | 70-130         |     |              |      |
| Dibromochloromethane                    | 21.3           | μg/kg wet      | 20.0           |                  | 106       | 53.9-173       |     |              |      |
| 1,2-Dibromoethane (EDB)                 | 17.6           | μg/kg wet      | 20.0           |                  | 88.0      | 70-130         |     |              |      |
| Dibromomethane                          | 17.6           | μg/kg wet      | 20.0           |                  | 88.0      | 70-130         |     |              |      |
| 1,2-Dichlorobenzene                     | 22.0           | μg/kg wet      | 20.0           |                  | 110       | 70-130         |     |              |      |
| 1,3-Dichlorobenzene                     | 22.0           | μg/kg wet      | 20.0           |                  | 110       | 70-130         |     |              |      |
| 1,4-Dichlorobenzene                     | 22.2           | μg/kg wet      | 20.0           |                  | 111       | 70-130         |     |              |      |
| Dichlorodifluoromethane (Freon12)       | 22.7           | μg/kg wet      | 20.0           |                  | 114       | 59.6-150       |     |              |      |
| 1,1-Dichloroethane                      | 18.2           | μg/kg wet      | 20.0           |                  | 91.0      | 70-130         |     |              |      |
| 1,2-Dichloroethane                      | 17.5           | μg/kg wet      | 20.0           |                  | 87.5      | 70-130         |     |              |      |
| 1,1-Dichloroethene                      | 19.9           | μg/kg wet      | 20.0           |                  | 99.5      | 70-130         |     |              |      |
| cis-1,2-Dichloroethene                  | 19.8           | μg/kg wet      | 20.0           |                  | 99.0      | 70-130         |     |              |      |
| •                                       | 19.3           | μg/kg wet      | 20.0           |                  | 96.5      | 70-130         |     |              |      |
| trans-1,2-Dichloroethene                | 17.3           | μg/kg wet      | 20.0           |                  | 86.5      | 70-130         |     |              |      |
| 1,2-Dichloropropane 1,3-Dichloropropane | 16.2           | μg/kg wet      | 20.0           |                  | 81.0      | 70-130         |     |              |      |
|                                         | 15.4           | μg/kg wet      | 20.0           |                  | 77.0      | 70-130         |     |              |      |
| 2,2-Dichloropropane 1,1-Dichloropropene | 19.5           | μg/kg wet      | 20.0           |                  | 97.5      | 70-130         |     |              |      |

| Analyte(s)                        | Result          | *RDL Units | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits   | RPD  | RPD<br>Limit | Flag |
|-----------------------------------|-----------------|------------|----------------|------------------|--------------|------------------|------|--------------|------|
| Batch 5071621 - SW846 5035A So    | oil (low level) |            |                |                  |              |                  |      |              |      |
| LCS (5071621-BS1)                 |                 |            | Prepared       | & Analyze        | d: 27-Jul    | -05              |      |              |      |
| cis-1,3-Dichloropropene           | 19.4            | μg/kg wet  | 20.0           |                  | 97.0         | 70-130           |      |              |      |
| trans-1,3-Dichloropropene         | 18.4            | μg/kg wet  | 20.0           |                  | 92.0         | 70-130           |      |              |      |
| Ethylbenzene                      | 21.0            | μg/kg wet  | 20.0           |                  | 105          | 70-130           |      |              |      |
| Hexachlorobutadiene               | 24.4            | μg/kg wet  | 20.0           |                  | 122          | 67.9-157         |      |              |      |
| 2-Hexanone (MBK)                  | 13.2            | μg/kg wet  | 20.0           |                  | 66.0         | 70-130           |      |              | QC-2 |
| Isopropylbenzene                  | 21.0            | μg/kg wet  | 20.0           |                  | 105          | 70-130           |      |              |      |
| 4-Isopropyltoluene                | 23.5            | μg/kg wet  | 20.0           |                  | 118          | 70-130           |      |              |      |
| Methyl tert-butyl ether           | 17.2            | μg/kg wet  | 20.0           |                  | 86.0         | 70-130           |      |              |      |
| 4-Methyl-2-pentanone (MIBK)       | 13.6            | μg/kg wet  | 20.0           |                  | 68.0         | 43.9-154         |      |              |      |
| Methylene chloride                | 19.0            | μg/kg wet  | 20.0           |                  | 95.0         | 70-130           |      |              |      |
| Naphthalene                       | 18.9            | μg/kg wet  | 20.0           |                  | 94.5         | 70-130           |      |              |      |
| n-Propylbenzene                   | 21.4            | μg/kg wet  | 20.0           |                  | 107          | 70-130           |      |              |      |
| Styrene                           | 20.8            | μg/kg wet  | 20.0           |                  | 104          | 70-130           |      |              |      |
| 1,1,1,2-Tetrachloroethane         | 23.4            | μg/kg wet  | 20.0           |                  | 117          | 70-130           |      |              |      |
| 1,1,2,2-Tetrachloroethane         | 16.3            | μg/kg wet  | 20.0           |                  | 81.5         | 70-130           |      |              |      |
| Tetrachloroethene                 | 22.2            | μg/kg wet  | 20.0           |                  | 111          | 70-130           |      |              |      |
| Toluene                           | 19.3            | μg/kg wet  | 20.0           |                  | 96.5         | 70-130           |      |              |      |
| 1,2,3-Trichlorobenzene            | 22.7            | μg/kg wet  | 20.0           |                  | 114          | 70-130           |      |              |      |
| 1,2,4-Trichlorobenzene            | 22.7            | μg/kg wet  | 20.0           |                  | 114          | 70-130           |      |              |      |
| 1,1,1-Trichloroethane             | 21.1            | μg/kg wet  | 20.0           |                  | 106          | 70-130           |      |              |      |
| 1,1,2-Trichloroethane             | 17.6            | μg/kg wet  | 20.0           |                  | 88.0         | 70-130           |      |              |      |
| Trichloroethene                   | 20.0            | μg/kg wet  | 20.0           |                  | 100          | 70-130           |      |              |      |
| Trichlorofluoromethane (Freon 11) | 20.9            | μg/kg wet  | 20.0           |                  | 104          | 70-138           |      |              |      |
| 1,2,3-Trichloropropane            | 16.0            | μg/kg wet  | 20.0           |                  | 80.0         | 70-130           |      |              |      |
| 1,2,4-Trimethylbenzene            | 21.2            | μg/kg wet  | 20.0           |                  | 106          | 70-130           |      |              |      |
| 1,3,5-Trimethylbenzene            | 21.1            | μg/kg wet  | 20.0           |                  | 106          | 70-130           |      |              |      |
| Vinyl chloride                    | 23.2            | μg/kg wet  | 20.0           |                  | 116          | 70-130           |      |              |      |
| m,p-Xylene                        | 42.9            | μg/kg wet  | 40.0           |                  | 107          | 70-130           |      |              |      |
| o-Xylene                          | 21.5            | μg/kg wet  | 20.0           |                  | 108          | 70-130           |      |              |      |
|                                   |                 |            | 50.0           |                  | 93.6         | 70-130           |      |              |      |
| Surrogate: 4-Bromofluorobenzene   | 46.8            | μg/kg wet  | 50.0           |                  | 93.0<br>99.6 | 70-130<br>70-130 |      |              |      |
| Surrogate: Toluene-d8             | 49.8            | μg/kg wet  |                |                  | 99.0<br>90.6 | 70-130<br>70-130 |      |              |      |
| Surrogate: 1,2-Dichloroethane-d4  | 45.3            | μg/kg wet  | 50.0           |                  | 103          | 70-130<br>70-130 |      |              |      |
| Surrogate: Dibromofluoromethane   | 51.5            | μg/kg wet  | 50.0           |                  |              |                  |      |              |      |
| LCS Dup (5071621-BSD1)            |                 |            | <del></del> -  | & Analyze        |              |                  | ·    |              |      |
| Acetone                           | 17.4            | μg/kg wet  | 20.0           |                  | 87.0         | 19.4-217         | 4.71 | 50           |      |
| Acrylonitrile                     | 14.3            | μg/kg wet  | 20.0           |                  | 71.5         | 70-130           | 7.25 | 25           |      |
| Benzene                           | 19.0            | μg/kg wet  | 20.0           |                  | 95.0         | 70-130           | 3.75 | 25           |      |
| Bromobenzene                      | 22.6            | μg/kg wet  | 20.0           |                  | 113          | 70-130           | 4.52 | 25           |      |
| Bromochloromethane                | 20.3            | μg/kg wet  | 20.0           |                  | 102          | 70-130           | 6.06 | 25           |      |
| Bromodichloromethane              | 21.9            | μg/kg wet  | 20.0           |                  | 110          | 70-130           | 3.70 | 25           |      |
| Bromoform                         | 19.4            | μg/kg wet  | 20.0           |                  | 97.0         | 70-130           | 5.29 | 25           |      |
| Bromomethane                      | 18.2            | μg/kg wet  | 20.0           |                  | 91.0         | 48.6-171         | 4.49 | 50           |      |
| 2-Butanone (MEK)                  | 10.2            | μg/kg wet  | 20.0           |                  | 51.0         | 16.5-153         | 14.7 | 50           |      |
| n-Butylbenzene                    | 20.8            | μg/kg wet  | 20.0           |                  | 104          | 70-130           | 2.93 | 25           |      |
| sec-Butylbenzene                  | 23.2            | μg/kg wet  | 20.0           |                  | 116          | 70-130           | 4.41 | 25           |      |
| tert-Butylbenzene                 | 23.2            | μg/kg wet  | 20.0           |                  | 116          | 70-130           | 3.51 | 25           |      |
| Carbon disulfide                  | 19.7            | μg/kg wet  | 20.0           |                  | 98.5         | 70-130           | 4.68 | 25           |      |
| Carbon tetrachloride              | 25.9            | μg/kg wet  | 20.0           |                  | 130          | 70-130           | 4.72 | 25           |      |
| Chlorobenzene                     | 22.2            | μg/kg wet  | 20.0           |                  | 111          | 70-130           | 4.61 | 25           |      |
| Chloroethane                      | 23.0            | μg/kg wet  | 20.0           |                  | 115          | 68.8-140         | 4.44 | 50           |      |
| Chloroform                        | 19.2            | μg/kg wet  | 20.0           |                  | 96.0         | 70-130           | 5.90 | 25           |      |
| Chloromethane                     | 18.7            | μg/kg wet  | 20.0           |                  | 93.5         | 70-130           | 6.06 | 25           |      |
| 2-Chlorotoluene                   | 22.2            | μg/kg wet  | 20.0           |                  | 111          | 70-130           | 8.45 | 25           |      |
| 4-Chlorotoluene                   | 21.4            | μg/kg wet  | 20.0           |                  | 107          | 70-130           | 3.81 | 25           |      |

| Analyte(s)                        | Result         | *RDL Units     | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits   | RPD          | RPD<br>Limit | Flag |
|-----------------------------------|----------------|----------------|----------------|------------------|-------------|------------------|--------------|--------------|------|
| Batch 5071621 - SW846 5035A So    | il (low level) |                | ·              |                  |             |                  |              |              | ,    |
| LCS Dup (5071621-BSD1)            |                |                | Prepared       | & Analyze        | ed: 27-Jul  | -05              |              |              |      |
| 1,2-Dibromo-3-chloropropane       | 18.9           | μg/kg wet      | 20.0           |                  | 94.5        | 70-130           | 7.12         | 25           |      |
| Dibromochloromethane              | 22.4           | μg/kg wet      | 20.0           |                  | 112         | 53.9-173         | 5.50         | 50           |      |
| 1,2-Dibromoethane (EDB)           | 18.4           | μg/kg wet      | 20.0           |                  | 92.0        | 70-130           | 4.44         | 25           |      |
| Dibromomethane                    | 18.3           | μg/kg wet      | 20.0           |                  | 91.5        | 70-130           | 3.90         | 25           |      |
| 1,2-Dichlorobenzene               | 22.6           | μg/kg wet      | 20.0           |                  | 113         | 70-130           | 2.69         | 25           |      |
| 1,3-Dichlorobenzene               | 22.9           | μg/kg wet      | 20.0           |                  | 114         | 70-130           | 3.57         | 25           |      |
| 1,4-Dichlorobenzene               | 22.9           | μg/kg wet      | 20.0           |                  | 114         | 70-130           | 2.67         | 25           |      |
| Dichlorodifluoromethane (Freon12) | 24.3           | μg/kg wet      | 20.0           |                  | 122         | 59.6-150         | 6.78         | 50           |      |
| 1,1-Dichloroethane                | 19.1           | μg/kg wet      | 20.0           |                  | 95.5        | 70-130           | 4.83         | 25           |      |
| 1,2-Dichloroethane                | 18.3           | μg/kg wet      | 20.0           |                  | 91.5        | 70-130           | 4.47         | 25           |      |
| 1,1-Dichloroethene                | 20.9           | μg/kg wet      | 20.0           |                  | 104         | 70-130           | 4.42         | 25           |      |
| cis-1,2-Dichloroethene            | 20.5           | μg/kg wet      | 20.0           |                  | 102         | 70-130           | 2.99         | 25           |      |
| trans-1,2-Dichloroethene          | 20.0           | μg/kg wet      | 20.0           |                  | 100         | 70-130           | 3.56         | 25           |      |
| 1,2-Dichloropropane               | 18.3           | μg/kg wet      | 20.0           |                  | 91.5        | 70-130           | 5.62         | 25           |      |
| 1,3-Dichloropropane               | 16.9           | μg/kg wet      | 20.0           |                  | 84.5        | 70-130           | 4.23         | 25           |      |
| 2,2-Dichloropropane               | 16.2           | μg/kg wet      | 20.0           |                  | 81.0        | 70-130           | 5.06         | 25           |      |
| 1,1-Dichloropropene               | 20.3           | μg/kg wet      | 20.0           |                  | 102         | 70-130           | 4.51         | 25           |      |
| cis-1,3-Dichloropropene           | 20.2           | μg/kg wet      | 20.0           |                  | 101         | 70-130           | 4.04         | 25           |      |
| trans-1,3-Dichloropropene         | 19.3           | μg/kg wet      | 20.0           | •                | 96.5        | 70-130           | 4.77         | 25           |      |
| Ethylbenzene                      | 21.9           | μg/kg wet      | 20.0           |                  | 110         | 70-130           | 4.65         | 25           |      |
| Hexachlorobutadiene               | 25.4           | μg/kg wet      | 20.0           |                  | 127         | 67.9-157         | 4.02         | 50           |      |
| 2-Hexanone (MBK)                  | 13.7           | μg/kg wet      | 20.0           |                  | 68.5        | 70-130           | 3.72         | 25           | QC-2 |
| Isopropylbenzene                  | 22.0           | μg/kg wet      | 20.0           |                  | 110         | 70-130           | 4.65         | 25           |      |
| 4-Isopropyltoluene                | 23.9           | μg/kg wet      | 20.0           |                  | 120         | 70-130           | 1.68         | 25           |      |
| Methyl tert-butyl ether           | 18.3           | μg/kg wet      | 20.0           |                  | 91.5        | 70-130           | 6.20         | 25           |      |
| 4-Methyl-2-pentanone (MIBK)       | 14.0           | μg/kg wet      | 20.0           |                  | 70.0        | 43.9-154         | 2.90         | 50           |      |
| Methylene chloride                | 19.7           | μg/kg wet      | 20.0           |                  | 98.5        | 70-130           | 3.62         | 25           |      |
| Naphthalene                       | 19.0           | μg/kg wet      | 20.0           |                  | 95.0        | 70-130           | 0.528        | 25           |      |
| n-Propylbenzene                   | 22.1           | μg/kg wet      | 20.0           |                  | 110         | 70-130           | 2.76         | 25           |      |
| Styrene                           | 22.0           | μg/kg wet      | 20.0           |                  | 110         | 70-130           | 5.61         | 25           |      |
| 1,1,1,2-Tetrachloroethane         | 24.2           | μg/kg wet      | 20.0           |                  | 121         | 70-130           | 3.36         | 25           |      |
| 1,1,2,2-Tetrachloroethane         | 17.3           | μg/kg wet      | 20.0           |                  | 86.5        | 70-130           | 5.95         | 25           |      |
| Tetrachloroethene                 | 23.3           | μg/kg wet      | 20.0           |                  | 116         | 70-130           | 4.41         | 25           |      |
| Toluene                           | 20.2           | μg/kg wet      | 20.0           |                  | 101         | 70-130           | 4.56         | 25           |      |
| 1,2,3-Trichlorobenzene            | 23.1           | μg/kg wet      | 20.0           |                  | 116         | 70-130           | 1.74         | 25           |      |
| 1,2,4-Trichlorobenzene            | 23.0           | μg/kg wet      | 20.0           |                  | 115         | 70-130           | 0.873        | 25           |      |
| 1,1,1-Trichloroethane             | 22.4           | μg/kg wet      | 20.0           |                  | 112         | 70-130           | 5.50         | 25           |      |
| 1,1,2-Trichloroethane             | 18.3           | μg/kg wet      | 20.0           |                  | 91.5        | 70-130           | 3.90         | 25           |      |
| Trichloroethene                   | 21.0           | μg/kg wet      | 20.0           |                  | 105         | 70-130           | 4.88         | 25           |      |
| Trichlorofluoromethane (Freon 11) | 22.2           | μg/kg wet      | 20.0           |                  | 111         | 70-138           | 6.51         | 50           |      |
| 1,2,3-Trichloropropane            | 17.0           | μg/kg wet      | 20.0           |                  | 85.0        | 70-130           | 6.06         | 25           |      |
| 1,2,4-Trimethylbenzene            | 22.0           | μg/kg wet      | 20.0           |                  | 110         | 70-130           | 3.70         | 25           |      |
| 1,3,5-Trimethylbenzene            | 22.3           | μg/kg wet      | 20.0           |                  | 112<br>120  | 70-130           | 5.50<br>3.39 | 25<br>25     |      |
| Vinyl chloride                    | 23.9           | μg/kg wet      | 20.0           |                  | 114         | 70-130<br>70-130 | 6.33         | 25           |      |
| m,p-Xylene                        | 45.4           | μg/kg wet      | 40.0           |                  | 114         | 70-130<br>70-130 | 5.41         | 25<br>25     |      |
| o-Xylene                          | 22.8           | μg/kg wet      | 20.0           |                  |             |                  | J.41         | 43           |      |
| Surrogate: 4-Bromofluorobenzene   | 47.3           | μg/kg wet      | 50.0           |                  | 94.6        | 70-130           |              |              |      |
| Surrogate: Toluene-d8             | 50.4           | μg/kg wet      | 50.0           |                  | 101<br>91.6 | 70-130<br>70-130 |              |              |      |
| Surrogate: 1,2-Dichloroethane-d4  | 45.8           | μg/kg wet      | 50.0<br>50.0   |                  | 91.0<br>102 | 70-130<br>70-130 |              |              |      |
| Surrogate: Dibromofluoromethane   | 51.0           | μg/kg wet      | 30.0           |                  | 102         | 70-130           |              |              |      |
| Batch 5071663 - SW846 5030 Soil   | (high level)   |                | D====== 1      | Q. A             | ad. 27 II   | 05               |              |              |      |
| Blank (5071663-BLK1)              |                |                | Prepared       | & Analyz         | a: Z/-Jul   | <b>-</b> U3      | ···········  |              |      |
| Acetone                           | BRL            | 20.0 μg/kg wet |                |                  |             |                  |              |              |      |

| Analyte(s)                        | Result       | *RDL Units     | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD | RPD<br>Limit | Flag |
|-----------------------------------|--------------|----------------|----------------|------------------|------------|----------------|-----|--------------|------|
| Batch 5071663 - SW846 5030 Soil   | (high level) |                |                |                  |            |                |     |              |      |
| Blank (5071663-BLK1)              |              |                | Prepared       | & Analyze        | d: 27-Jul- | 05             |     |              |      |
| Acrylonitrile                     | BRL          | 1.0 μg/kg wet  | • · · · · · ·  | <del></del>      |            |                |     |              |      |
| Benzene                           | BRL          | 1.0 µg/kg wet  |                |                  |            |                |     |              |      |
| Bromobenzene                      | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| Bromochloromethane                | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| Bromodichloromethane              | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| Bromoform                         | BRL          | 1.0 µg/kg wet  |                |                  |            |                |     |              |      |
| Bromomethane                      | BRL          | 2.0 μg/kg wet  |                |                  |            |                |     |              |      |
| 2-Butanone (MEK)                  | BRL          | 10.0 μg/kg wet |                |                  |            |                |     |              |      |
| n-Butylbenzene                    | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| sec-Butylbenzene                  | BRL          | 1.0 µg/kg wet  |                |                  |            |                |     |              |      |
| tert-Butylbenzene                 | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| Carbon disulfide                  | BRL          | 5.0 μg/kg wet  |                |                  |            |                |     |              |      |
| Carbon tetrachloride              | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| Chlorobenzene                     | BRL          | 1.0 µg/kg wet  |                |                  |            |                |     |              |      |
| Chloroethane                      | BRL          | 2.0 μg/kg wet  |                |                  |            |                |     |              |      |
| Chloroform                        | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| Chloromethane                     | BRL          | 2.0 μg/kg wet  |                |                  |            |                |     |              |      |
| 2-Chlorotoluene                   | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| 4-Chlorotoluene                   | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| 1,2-Dibromo-3-chloropropane       | BRL          | 2.0 μg/kg wet  |                |                  |            |                |     |              |      |
| Dibromochloromethane              | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| 1,2-Dibromoethane (EDB)           | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| Dibromomethane                    | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| 1,2-Dichlorobenzene               | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| 1,3-Dichlorobenzene               | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| 1,4-Dichlorobenzene               | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| Dichlorodifluoromethane (Freon12) | BRL          | 2.0 μg/kg wet  |                |                  |            |                |     |              |      |
| 1,1-Dichloroethane                | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| 1,2-Dichloroethane                | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| 1,1-Dichloroethene                | BRL          | 1.0 µg/kg wet  |                |                  |            |                |     |              |      |
| cis-1,2-Dichloroethene            | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| trans-1,2-Dichloroethene          | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| 1,2-Dichloropropane               | BRL          | 1.0 µg/kg wet  |                |                  |            |                |     |              |      |
| 1,3-Dichloropropane               | BRL          | 1.0 µg/kg wet  |                |                  |            |                |     |              |      |
| 2,2-Dichloropropane               | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| 1,1-Dichloropropene               | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| cis-1,3-Dichloropropene           | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| trans-1,3-Dichloropropene         | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| Ethylbenzene                      | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| Hexachlorobutadiene               | BRL          | 1.0 µg/kg wet  |                |                  |            |                |     |              |      |
| 2-Hexanone (MBK)                  | BRL          | 10.0 μg/kg wet |                |                  |            |                |     |              |      |
| Isopropylbenzene                  | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| 4-Isopropyltoluene                | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| Methyl tert-butyl ether           | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| 4-Methyl-2-pentanone (MIBK)       | BRL          | 10.0 μg/kg wet |                |                  |            |                |     |              |      |
| Methylene chloride                | BRL          | 10.0 μg/kg wet |                |                  |            |                |     |              |      |
| Naphthalene                       | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| n-Propylbenzene                   | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| Styrene                           | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| 1,1,1,2-Tetrachloroethane         | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| 1,1,2.7-tetrachloroethane         | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| Tetrachloroethene                 | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| Toluene                           | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |
| 1,2,3-Trichlorobenzene            | BRL          | 1.0 μg/kg wet  |                |                  |            |                |     |              |      |

| Analyte(s)                                  | Result       | *RDL Units             | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit | Flag |
|---------------------------------------------|--------------|------------------------|----------------|------------------|-------------|----------------|-----|--------------|------|
| Batch 5071663 - SW846 5030 Soil             | (high level) |                        |                |                  |             |                |     |              |      |
| Blank (5071663-BLK1)                        |              |                        | Prepared       | & Analyze        | ed: 27-Jul- | -05            |     |              |      |
| 1,2,4-Trichlorobenzene                      | BRL          | 1.0 μg/kg wet          |                |                  |             |                |     |              |      |
| 1,1,1-Trichloroethane                       | BRL          | 1.0 μg/kg wet          |                |                  |             |                |     |              |      |
| 1,1,2-Trichloroethane                       | BRL          | 1.0 µg/kg wet          |                |                  |             |                |     |              |      |
| Trichloroethene                             | BRL          | 1.0 µg/kg wet          |                |                  |             |                |     |              |      |
| Trichlorofluoromethane (Freon 11)           | BRL          | 1.0 µg/kg wet          |                |                  |             |                |     |              |      |
| 1,2,3-Trichloropropane                      | BRL          | 1.0 µg/kg wet          |                |                  |             |                |     |              |      |
| 1,2,4-Trimethylbenzene                      | BRL          | 1.0 µg/kg wet          |                |                  |             |                |     |              |      |
| 1,3,5-Trimethylbenzene                      | BRL          | 1.0 µg/kg wet          |                |                  |             |                |     |              |      |
| Vinyl chloride                              | BRL          | 1.0 µg/kg wet          |                |                  |             |                |     |              |      |
| m,p-Xylene                                  | BRL          | 2.0 μg/kg wet          |                |                  |             |                |     |              |      |
| o-Xylene                                    | BRL          | 1.0 µg/kg wet          |                |                  |             |                |     |              |      |
| Surrogate: 4-Bromofluorobenzene             | 49.1         | μg/kg wet              | 50.0           |                  | 98.2        | 70-130         |     |              |      |
| Surrogate: Toluene-d8                       | 50.2         | μg/kg wet              | 50.0           |                  | 100         | 70-130         |     |              |      |
| Surrogate: 1,2-Dichloroethane-d4            | 53.5         | μg/kg wet              | 50.0           |                  | 107         | 70-130         |     |              |      |
| Surrogate: Dibromofluoromethane             | 48.9         | μg/kg wet              | 50.0           |                  | 97.8        | 70-130         |     |              |      |
| LCS (5071663-BS1)                           |              | 100                    |                | & Analyze        | ed: 27-Jul- | -05            |     |              |      |
| Acetone                                     | 20.9         | μg/kg wet              | 20.0           |                  | 104         | 19.4-217       |     |              |      |
| Acrylonitrile                               | 19.0         | μg/kg wet              | 20.0           |                  | 95.0        | 70-130         |     |              |      |
| Benzene                                     | 20.8         | μg/kg wet              | 20.0           |                  | 104         | 70-130         |     |              |      |
| Bromobenzene                                | 20.7         | μg/kg wet              | 20.0           |                  | 104         | 70-130         |     |              |      |
| Bromochloromethane                          | 21.5         | μg/kg wet              | 20.0           |                  | 108         | 70-130         |     |              |      |
| Bromodichloromethane                        | 21.5         | μg/kg wet              | 20.0           |                  | 108         | 70-130         |     |              |      |
| Bromoform                                   | 18.9         | μg/kg wet              | 20.0           |                  | 94.5        | 70-130         |     |              |      |
| Bromomethane                                | 24.3         | μg/kg wet              | 20.0           |                  | 122         | 48.6-171       |     |              |      |
| 2-Butanone (MEK)                            | 20.8         | μg/kg wet              | 20.0           |                  | 104         | 16.5-153       |     |              |      |
| n-Butylbenzene                              | 21.6         | μg/kg wet              | 20.0           |                  | 108         | 70-130         |     |              |      |
| sec-Butylbenzene                            | 21.1         | μg/kg wet              | 20.0           |                  | 106         | 70-130         |     |              |      |
| •                                           | 21.2         | μg/kg wet              | 20.0           |                  | 106         | 70-130         |     |              |      |
| tert-Butylbenzene Carbon disulfide          | 19.9         | μg/kg wet              | 20.0           |                  | 99.5        | 70-130         |     |              |      |
| Carbon tetrachloride                        | 20.9         | μg/kg wet              | 20.0           |                  | 104         | 70-130         |     |              |      |
| Chlorobenzene                               | 20.3         | μg/kg wet              | 20.0           |                  | 102         | 70-130         |     |              |      |
|                                             | 22.5         | μg/kg wet              | 20.0           |                  | 112         | 68.8-140       |     |              |      |
| Chloroform                                  | 21.1         |                        | 20.0           |                  | 106         | 70-130         |     |              |      |
| Chloroform                                  | 25.6         | μg/kg wet              | 20.0           |                  | 128         | 70-130         |     |              |      |
| Chloromethane                               | 20.9         | μg/kg wet              | 20.0           |                  | 104         | 70-130         |     |              |      |
| 2-Chlorotoluene                             | 20.7         | μg/kg wet<br>μg/kg wet | 20.0           |                  | 104         | 70-130         |     |              |      |
| 4-Chlorotoluene 1,2-Dibromo-3-chloropropane | 19.4         | μg/kg wet              | 20.0           |                  | 97.0        | 70-130         |     |              |      |
| Dibromochloromethane                        | 22.2         | μg/kg wet              | 20.0           |                  | 111         | 53.9-173       |     |              |      |
|                                             | 20.9         | μg/kg wet              | 20.0           |                  | 104         | 70-130         |     |              |      |
| 1,2-Dibromoethane (EDB)  Dibromomethane     | 21.7         | μg/kg wet              | 20.0           |                  | 108         | 70-130         |     |              |      |
| 1,2-Dichlorobenzene                         | 21.7         | μg/kg wet              | 20.0           |                  | 110         | 70-130         |     |              |      |
| 1,3-Dichlorobenzene                         | 21.6         | μg/kg wet              | 20.0           |                  | 108         | 70-130         |     |              |      |
| 1,4-Dichlorobenzene                         | 21.9         | μg/kg wet              | 20.0           |                  | 110         | 70-130         |     |              |      |
| Dichlorodifluoromethane (Freon12)           | 29.9         | μg/kg wet              | 20.0           |                  | 150         | 59.6-150       |     |              |      |
|                                             | 21.1         | μg/kg wet              | 20.0           |                  | 106         | 70-130         |     |              |      |
| 1,1-Dichloroethane 1,2-Dichloroethane       | 21.6         | μg/kg wet              | 20.0           |                  | 108         | 70-130         |     |              |      |
| 1,1-Dichloroethene                          | 19.7         | μg/kg wet              | 20.0           |                  | 98.5        | 70-130         |     |              |      |
| cis-1,2-Dichloroethene                      | 21.1         | μg/kg wet              | 20.0           |                  | 106         | 70-130         |     |              |      |
| •                                           | 20.4         | μg/kg wet              | 20.0           |                  | 102         | 70-130         |     |              |      |
| trans-1,2-Dichloroethene                    | 21.8         | μg/kg wet<br>μg/kg wet | 20.0           |                  | 102         | 70-130         |     |              |      |
| 1,2-Dichloropropane                         | 21.8         |                        | 20.0           |                  | 110         | 70-130         |     |              |      |
| 1,3-Dichloropropane                         | 21.9         | μg/kg wet<br>μg/kg wet | 20.0           |                  | 122         | 70-130         |     |              |      |
| 2,2-Dichloropropane                         |              |                        | 20.0           |                  | 110         | 70-130         |     |              |      |
| 1,1-Dichloropropene                         | 21.9         | μg/kg wet              |                |                  |             | 70-130         |     |              |      |
| cis-1,3-Dichloropropene                     | 22.1         | μg/kg wet              | 20.0           |                  | 110         | 10-130         |     |              |      |

| Analyte(s)                              | Result       | *RDL Units                         | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits           | RPD   | RPD<br>Limit | Flag |
|-----------------------------------------|--------------|------------------------------------|----------------|------------------|-------------|--------------------------|-------|--------------|------|
| Batch 5071663 - SW846 5030 Soil (       | high level)  |                                    |                |                  |             |                          |       |              |      |
| LCS (5071663-BS1)                       |              |                                    | Prepared       | & Analyze        | ed: 27-Jul- | -05                      |       |              |      |
| trans-1,3-Dichloropropene               | 22.6         | μg/kg wet                          | 20.0           |                  | 113         | 70-130                   |       |              |      |
| Ethylbenzene                            | 20.3         | μg/kg wet                          | 20.0           |                  | 102         | 70-130                   |       |              |      |
| Hexachlorobutadiene                     | 24.3         | μg/kg wet                          | 20.0           |                  | 122         | 67.9-157                 |       |              |      |
| 2-Hexanone (MBK)                        | 26.4         | μg/kg wet                          | 20.0           |                  | 132         | 70-130                   |       |              | QC-1 |
| Isopropylbenzene                        | 19.6         | μg/kg wet                          | 20.0           |                  | 98.0        | 70-130                   |       |              |      |
| 4-Isopropyltoluene                      | 22.6         | μg/kg wet                          | 20.0           |                  | 113         | 70-130                   |       |              |      |
| Methyl tert-butyl ether                 | 21.1         | μg/kg wet                          | 20.0           |                  | 106         | 70-130                   |       |              |      |
| 4-Methyl-2-pentanone (MIBK)             | 17.5         | μg/kg wet                          | 20.0           |                  | 87.5        | 43.9-154                 |       |              |      |
| Methylene chloride                      | 22.6         | μg/kg wet                          | 20.0           |                  | 113         | 70-130                   |       |              |      |
| Naphthalene                             | 21.3         | μg/kg wet                          | 20.0           |                  | 106         | 70-130                   |       |              |      |
| n-Propylbenzene                         | 20.2         | μg/kg wet                          | 20.0           |                  | 101         | 70-130                   |       |              |      |
| Styrene                                 | 20.0         | μg/kg wet                          | 20.0           |                  | 100         | 70-130                   |       |              |      |
| 1,1,1,2-Tetrachloroethane               | 20.9         | μg/kg wet                          | 20.0           |                  | 104         | 70-130                   |       |              |      |
| 1,1,2,2-Tetrachloroethane               | 19.7         | μg/kg wet                          | 20.0           |                  | 98.5        | 70-130                   |       |              |      |
| Tetrachloroethene                       | 22.0         | μg/kg wet                          | 20.0           |                  | 110         | 70-130                   |       |              |      |
| Toluene                                 | 21.2         | μg/kg wet                          | 20.0           |                  | 106         | 70-130                   |       |              |      |
| 1,2,3-Trichlorobenzene                  | 21.9         | μg/kg wet                          | 20.0           |                  | 110         | 70-130                   |       |              |      |
| 1,2,4-Trichlorobenzene                  | 21.9         | μg/kg wet                          | 20.0           |                  | 110         | 70-130                   |       |              |      |
| 1,1,1-Trichloroethane                   | 21.3         | μg/kg wet                          | 20.0           |                  | 106         | 70-130                   |       |              |      |
| 1,1,2-Trichloroethane                   | 22.1         | μg/kg wet                          | 20.0           |                  | 110         | 70-130                   |       |              |      |
| Trichloroethene                         | 20.3         | μg/kg wet                          | 20.0           |                  | 102         | 70-130                   |       |              |      |
| Trichlorofluoromethane (Freon 11)       | 23.0         | μg/kg wet                          | 20.0           |                  | 115         | 70-138                   |       |              |      |
| 1,2,3-Trichloropropane                  | 19.1         | μg/kg wet                          | 20.0           |                  | 95.5        | 70-130                   |       |              |      |
| 1,2,4-Trimethylbenzene                  | 20.4         | μg/kg wet                          | 20.0           |                  | 102         | 70-130                   |       |              |      |
| 1,3,5-Trimethylbenzene                  | 20.4         | μg/kg wet                          | 20.0           |                  | 102         | 70-130                   |       |              |      |
| Vinyl chloride                          | 24.1         | μg/kg wet                          | 20.0           |                  | 120         | 70-130                   |       |              |      |
| m,p-Xylene                              | 42.0         | μg/kg wet                          | 40.0           |                  | 105         | 70-130                   |       |              |      |
| o-Xylene                                | 20.6         | μg/kg wet                          | 20.0           |                  | 103         | 70-130                   |       |              |      |
| Surrogate: 4-Bromofluorobenzene         | 49.3         | μg/kg wet                          | 50.0           |                  | 98.6        | 70-130                   |       |              |      |
| Surrogate: Toluene-d8                   | 49.9         | μg/kg wet                          | 50.0           |                  | 99.8        | 70-130                   |       |              |      |
| Surrogate: 1,2-Dichloroethane-d4        | 53.7         | μg/kg wet                          | 50.0           |                  | 107         | 70-130                   |       |              |      |
| Surrogate: Dibromofluoromethane         | 50.6         | μg/kg wet                          | 50.0           |                  | 101         | 70-130                   |       |              |      |
| -                                       | 30.0         | μ <sub>B</sub> /κ <sub>B</sub> wet |                | 27 1.1 05        |             |                          | 5     |              |      |
| LCS Dup (5071663-BSD1)                  | 22.7         | a/ka wat                           | 20.0           | 27-Jul-03        | Allalyzec   | 1: 28-Jul-0:<br>19.4-217 | 9.17  | 50           |      |
| Acetone                                 | 22.7         | μg/kg wet                          | 20.0           |                  | 97.0        | 70-130                   | 2.08  | 25           |      |
| Acrylonitrile                           | 19.4         | μg/kg wet                          | 20.0           |                  | 102         | 70-130                   | 1.94  | 25           |      |
| Benzene                                 | 20.3<br>20.7 | μg/kg wet<br>μg/kg wet             | 20.0           |                  | 102         | 70-130                   | 0.00  | 25           |      |
| Bromobenzene                            | 20.7         |                                    | 20.0           |                  | 104         | 70-130                   | 3.77  | 25           |      |
| Bromochloromethane Bromodichloromethane | 21.7         | μg/kg wet<br>μg/kg wet             | 20.0           |                  | 108         | 70-130                   | 0.00  | 25           |      |
|                                         | 18.8         | μg/kg wet                          | 20.0           |                  | 94.0        | 70-130                   | 0.531 | 25           |      |
| Bromoform Bromomethane                  | 24.1         | μg/kg wet                          | 20.0           |                  | 120         | 48.6-171                 | 1.65  | 50           |      |
| 2-Butanone (MEK)                        | 18.7         | μg/kg wet                          | 20.0           |                  | 93.5        | 16.5-153                 | 10.6  | 50           |      |
| ` ,                                     | 22.6         | μg/kg wet                          | 20.0           |                  | 113         | 70-130                   | 4.52  | 25           |      |
| n-Butylbenzene                          | 21.0         | μg/kg wet                          | 20.0           |                  | 105         | 70-130                   | 0.948 | 25           |      |
| sec-Butylbenzene                        | 21.2         | μg/kg wet                          | 20.0           |                  | 106         | 70-130                   | 0.00  | 25           |      |
| tert-Butylbenzene                       | 19.4         | μg/kg wet                          | 20.0           |                  | 97.0        | 70-130                   | 2.54  | 25           |      |
| Carbon disulfide Carbon tetrachloride   | 20.1         | μg/kg wet                          | 20.0           |                  | 100         | 70-130                   | 3.92  | 25           |      |
| Chlorobenzene                           | 20.3         | μg/kg wet                          | 20.0           |                  | 102         | 70-130                   | 0.00  | 25           |      |
| Chloroethane                            | 21.9         | μg/kg wet<br>μg/kg wet             | 20.0           |                  | 110         | 68.8-140                 | 1.80  | 50           |      |
|                                         | 20.8         | μg/kg wet                          | 20.0           |                  | 104         | 70-130                   | 1.90  | 25           |      |
| Chloromethane                           | 24.3         | μg/kg wet                          | 20.0           |                  | 122         | 70-130                   | 4.80  | 25           |      |
| Chloroteluene                           | 20.6         | μg/kg wet                          | 20.0           |                  | 103         | 70-130                   | 0.966 | 25           |      |
| 2-Chlorotoluene                         | 20.5         | μg/kg wet                          | 20.0           |                  | 103         | 70-130                   | 1.94  | 25           |      |
| 4-Chlorotoluene                         | 19.5         | μg/kg wet                          | 20.0           |                  | 97.5        | 70-130                   | 0.514 | 25           |      |

| Analyte(s)                        | Result       | *RDL Units      | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD   | RPD<br>Limit | Flag |
|-----------------------------------|--------------|-----------------|----------------|------------------|----------|----------------|-------|--------------|------|
| Batch 5071663 - SW846 5030 Soil   | (high level) |                 |                |                  |          |                |       |              | ,    |
| LCS Dup (5071663-BSD1)            |              |                 | Prepared:      | 27-Jul-05        | Analyzed | l: 28-Jul-0:   | 5     |              |      |
| Dibromochloromethane              | 20.8         | μg/kg wet       | 20.0           |                  | 104      | 53.9-173       | 6.51  | 50           |      |
| 1,2-Dibromoethane (EDB)           | 20.5         | μg/kg wet       | 20.0           |                  | 102      | 70-130         | 1.94  | 25           |      |
| Dibromomethane                    | 20.5         | μg/kg wet       | 20.0           |                  | 102      | 70-130         | 5.71  | 25           |      |
| 1,2-Dichlorobenzene               | 22.2         | μg/kg wet       | 20.0           |                  | 111      | 70-130         | 0.905 | 25           |      |
| 1,3-Dichlorobenzene               | 21.3         | μg/kg wet       | 20.0           |                  | 106      | 70-130         | 1.87  | 25           |      |
| 1,4-Dichlorobenzene               | 22,5         | μg/kg wet       | 20.0           |                  | 112      | 70-130         | 1.80  | 25           |      |
| Dichlorodifluoromethane (Freon12) | 30.1         | μg/kg wet       | 20.0           |                  | 150      | 59.6-150       | 0.00  | 50           |      |
| 1,1-Dichloroethane                | 20.7         | μg/kg wet       | 20.0           |                  | 104      | 70-130         | 1.90  | 25           |      |
| 1,2-Dichloroethane                | 20.8         | μg/kg wet       | 20.0           |                  | 104      | 70-130         | 3.77  | 25           |      |
| 1,1-Dichloroethene                | 20.4         | μg/kg wet       | 20.0           |                  | 102      | 70-130         | 3.49  | 25           |      |
| cis-1,2-Dichloroethene            | 20.4         | μg/kg wet       | 20.0           |                  | 102      | 70-130         | 3.85  | 25           |      |
| trans-1,2-Dichloroethene          | 19.9         | μg/kg wet       | 20.0           |                  | 99.5     | 70-130         | 2.48  | 25           |      |
| 1,2-Dichloropropane               | 21.2         | μg/kg wet       | 20.0           |                  | 106      | 70-130         | 2.79  | 25           |      |
| 1,3-Dichloropropane               | 21.0         | μg/kg wet       | 20.0           |                  | 105      | 70-130         | 4.65  | 25           |      |
| 2,2-Dichloropropane               | 23.8         | μg/kg wet       | 20.0           |                  | 119      | 70-130         | 2.49  | 25           |      |
| 1,1-Dichloropropene               | 21.9         | μg/kg wet       | 20.0           |                  | 110      | 70-130         | 0.00  | 25           |      |
| cis-1,3-Dichloropropene           | 21.4         | μg/kg wet       | 20.0           |                  | 107      | 70-130         | 2.76  | 25           |      |
| trans-1,3-Dichloropropene         | 22.0         | μg/kg wet       | 20.0           |                  | 110      | 70-130         | 2.69  | 25           |      |
| Ethylbenzene                      | 20.2         | μg/kg wet       | 20.0           |                  | 101      | 70-130         | 0.985 | 25           |      |
| Hexachlorobutadiene               | 25.4         | μg/kg wet       | 20.0           |                  | 127      | 67.9-157       | 4.02  | 50           |      |
| 2-Hexanone (MBK)                  | 25.6         | μg/kg wet       | 20.0           |                  | 128      | 70-130         | 3.08  | 25           |      |
| Isopropylbenzene                  | 19.8         | μg/kg wet       | 20.0           |                  | 99.0     | 70-130         | 1.02  | 25           |      |
| 4-Isopropyltoluene                | 23.6         | μg/kg wet       | 20.0           |                  | 118      | 70-130         | 4.33  | 25           |      |
| Methyl tert-butyl ether           | 20.4         | μg/kg wet       | 20.0           |                  | 102      | 70-130         | 3.85  | 25           |      |
| 4-Methyl-2-pentanone (MIBK)       | 16.9         | μg/kg wet       | 20.0           |                  | 84.5     | 43.9-154       | 3.49  | 50           |      |
| Methylene chloride                | 22.2         | μg/kg wet       | 20.0           |                  | 111      | 70-130         | 1.79  | 25           |      |
| Naphthalene                       | 20.6         | μg/kg wet       | 20.0           |                  | 103      | 70-130         | 2.87  | 25           |      |
| n-Propylbenzene                   | 20.4         | μg/kg wet       | 20.0           |                  | 102      | 70-130         | 0.985 | 25           |      |
| Styrene                           | 19.8         | μg/kg wet       | 20.0           |                  | 99.0     | 70-130         | 1.01  | 25           |      |
| 1,1,2-Tetrachloroethane           | 21.1         | μg/kg wet       | 20.0           |                  | 106      | 70-130         | 1.90  | 25           |      |
| 1,1,2,2-Tetrachloroethane         | 19.2         | μg/kg wet       | 20.0           |                  | 96.0     | 70-130         | 2.57  | 25           |      |
| Tetrachloroethene                 | 22.0         | μg/kg wet       | 20.0           |                  | 110      | 70-130         | 0.00  | 25           |      |
| Toluene                           | 20.5         | μg/kg wet       | 20.0           |                  | 102      | 70-130         | 3.85  | 25           |      |
| 1,2,3-Trichlorobenzene            | 21.8         | μg/kg wet       | 20.0           |                  | 109      | 70-130         | 0.913 | 25           |      |
| 1,2,4-Trichlorobenzene            | 22.1         | μg/kg wet       | 20.0           |                  | 110      | 70-130         | 0.00  | 25           |      |
| 1,1,1-Trichloroethane             | 21.0         | μg/kg wet       | 20.0           |                  | 105      | 70-130         | 0.948 | 25           |      |
| 1,1,2-Trichloroethane             | 21.3         | μg/kg wet       | 20.0           |                  | 106      | 70-130         | 3.70  | 25           |      |
| Trichloroethene                   | 20.8         | μg/kg wet       | 20.0           |                  | 104      | 70-130         | 1.94  | 25           |      |
| Trichlorofluoromethane (Freon 11) | 22.2         | μg/kg wet       | 20.0           |                  | 111      | 70-138         | 3.54  | 50           |      |
| 1,2,3-Trichloropropane            | 19.0         | μg/kg wet       | 20.0           |                  | 95.0     | 70-130         | 0.525 | 25           |      |
| 1,2,4-Trimethylbenzene            | 20.4         | μg/kg wet       | 20.0           |                  | 102      | 70-130         | 0.00  | 25           |      |
| 1,3,5-Trimethylbenzene            | 20.6         | μg/kg wet       | 20.0           |                  | 103      | 70-130         | 0.976 | 25           |      |
| Vinyl chloride                    | 23.3         | μg/kg wet       | 20.0           |                  | 116      | 70-130         | 3.39  | 25           |      |
| m,p-Xylene                        | 42.3         | μg/kg wet       | 40.0           |                  | 106      | 70-130         | 0.948 | 25           |      |
| o-Xylene                          | 20.2         | μg/kg wet       | 20.0           |                  | 101      | 70-130         | 1.96  | 25           |      |
| Surrogate: 4-Bromofluorobenzene   | 48.8         | μg/kg wet       | 50.0           |                  | 97.6     | 70-130         |       |              |      |
| Surrogate: Toluene-d8             | 48.8         | μg/kg wet       | 50.0           |                  | 97.6     | 70-130         |       |              |      |
| Surrogate: 1,2-Dichloroethane-d4  | 52.0         | μg/kg wet       | 50.0           |                  | 104      | 70-130         |       |              |      |
| Surrogate: Dibromofluoromethane   | 49.1         | μg/kg wet       | 50.0           |                  | 98.2     | 70-130         |       |              |      |
| Matrix Spike (5071663-MS1)        |              | rce: SA31365-05 |                | 27-Jul-05        | Analyzed | : 28-Jul-05    | j .   |              |      |
| Benzene                           | 21.8         | μg/kg dry       | 20.0           | BRL              | 109      | 70-130         |       |              |      |
| Chlorobenzene                     | 21.2         | μg/kg dry       | 20.0           | BRL              | 106      | 70-130         |       |              |      |
| 1,1-Dichloroethene                | 21.0         | μg/kg dry       | 20.0           | BRL              | 105      | 70-130         |       |              |      |
| Toluene                           | 21.7         | μg/kg dry       | 20.0           | BRL              | 108      | 70-130         |       |              |      |

| Analyte(s)                         | Result     | *RDL Units      | Spike<br>Level | Source<br>Result                      | %REC       | %REC<br>Limits | RPD   | RPD<br>Limit | Flag |
|------------------------------------|------------|-----------------|----------------|---------------------------------------|------------|----------------|-------|--------------|------|
| Batch 5071663 - SW846 5030 Soil (h | igh level) |                 |                | · · · · · · · · · · · · · · · · · · · |            |                |       |              |      |
| Matrix Spike (5071663-MS1)         | Sou        | rce: SA31365-05 | Prepared:      | 27-Jul-05                             | Analyzed   | : 28-Jul-0:    | 5     |              |      |
| Trichloroethene                    | 21.4       | μg/kg dry       | 20.0           | BRL                                   | 107        | 70-130         |       |              |      |
| Surrogate: 4-Bromofluorobenzene    | 50.2       | μg/kg dry       | 50.0           |                                       | 100        | 70-130         |       |              |      |
| Surrogate: Toluene-d8              | 48.8       | μg/kg dry       | 50.0           |                                       | 97.6       | 70-130         |       |              |      |
| Surrogate: 1,2-Dichloroethane-d4   | 55.9       | μg/kg dry       | 50.0           |                                       | 112        | 70-130         |       |              |      |
| Surrogate: Dibromofluoromethane    | 52.6       | μg/kg dry       | 50.0           |                                       | 105        | 70-130         |       |              |      |
| •                                  |            |                 |                | 27 101 05                             |            |                |       |              |      |
| Matrix Spike Dup (5071663-MSD1)    |            | rce: SA31365-05 |                |                                       |            | : 28-Jul-0:    |       | 20           |      |
| Benzene                            | 22.2       | μg/kg dry       | 20.0           | BRL                                   | 111        | 70-130         | 1.82  | 30           |      |
| Chlorobenzene                      | 22.3       | μg/kg dry       | 20.0           | BRL                                   | 112        | 70-130         | 5.50  | 30           |      |
| 1,1-Dichloroethene                 | 22.0       | μg/kg dry       | 20.0           | BRL                                   | 110        | 70-130         | 4.65  | 30           |      |
| Toluene                            | 22.5       | μg/kg dry       | 20.0           | BRL                                   | 112        | 70-130         | 3.64  | 30           |      |
| Trichloroethene                    | 21.6       | μg/kg dry       | 20.0           | BRL                                   | 108        | 70-130         | 0.930 | 30           |      |
| Surrogate: 4-Bromofluorobenzene    | 49.4       | μg/kg dry       | 50.0           |                                       | 98.8       | 70-130         |       |              |      |
| Surrogate: Toluene-d8              | 48.8       | μg/kg dry       | 50.0           |                                       | 97.6       | 70-130         |       |              |      |
| Surrogate: 1,2-Dichloroethane-d4   | 53.3       | μg/kg dry       | 50.0           |                                       | 107        | 70-130         |       |              |      |
| Surrogate: Dibromofluoromethane    | 50.8       | μg/kg dry       | <i>50.0</i>    |                                       | 102        | 70-130         |       |              |      |
| Batch 5071721 - SW846 5030 Soil (h | igh level) |                 |                |                                       |            |                |       |              |      |
| Blank (5071721-BLK1)               |            |                 | Prepared       | & Analyze                             | d: 28-Jul- | 05             |       |              |      |
| Acetone                            | BRL        | 20.0 μg/kg wet  | <del></del>    | <u> </u>                              |            |                |       |              |      |
| Acrylonitrile                      | BRL        | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| Benzene                            | BRL        | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| Bromobenzene                       | BRL        | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| Bromochloromethane                 | BRL        | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| Bromodichloromethane               | BRL        | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| Bromoform                          | BRL        | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| Bromomethane                       | BRL        | 2.0 μg/kg wet   |                |                                       |            |                |       |              |      |
|                                    | BRL        | 10.0 μg/kg wet  |                |                                       |            |                |       |              |      |
| 2-Butanone (MEK)                   | BRL        |                 |                |                                       |            |                |       |              |      |
| n-Butylbenzene                     | BRL        | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| sec-Butylbenzene                   |            | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| tert-Butylbenzene                  | BRL        | 1.0 μg/kg wet   | •              |                                       |            |                |       |              |      |
| Carbon disulfide                   | BRL        | 5.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| Carbon tetrachloride               | BRL        | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| Chlorobenzene                      | BRL        | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| Chloroethane                       | BRL        | 2.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| Chloroform                         | BRL        | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| Chloromethane                      | BRL        | 2.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| 2-Chlorotoluene                    | BRL        | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| 4-Chlorotoluene                    | BRL        | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| 1,2-Dibromo-3-chloropropane        | BRL        | 2.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| Dibromochloromethane               | BRL        | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| 1,2-Dibromoethane (EDB)            | BRL        | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| Dibromomethane                     | BRL        | 1.0 μg/kg wet   |                | •                                     |            |                |       |              |      |
| 1,2-Dichlorobenzene                | BRL        | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| 1,3-Dichlorobenzene                | BRL        | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| 1,4-Dichlorobenzene                | BRL        | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| Dichlorodifluoromethane (Freon12)  | BRL        | 2.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| 1,1-Dichloroethane                 | BRL        | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| 1,2-Dichloroethane                 | BRL        | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |
| 1,1-Dichloroethene                 | BRL        | 1.0 µg/kg wet   |                |                                       |            |                |       |              |      |
| cis-1,2-Dichloroethene             | BRL        | 1.0 µg/kg wet   |                |                                       |            |                |       |              |      |
| trans-1,2-Dichloroethene           | BRL        | 1.0 µg/kg wet   |                |                                       |            |                |       |              |      |
| 1,2-Dichloropropane                | BRL        | 1.0 µg/kg wet   |                |                                       |            |                |       |              |      |
| 1,3-Dichloropropane                | BRL        | 1.0 µg/kg wet   |                |                                       |            |                |       |              |      |
| 2,2-Dichloropropane                | BRL        | 1.0 μg/kg wet   |                |                                       |            |                |       |              |      |

| Analyte(s)                           | Result       | *RDL Units             | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits | RPD | RPD<br>Limit | Flag        |
|--------------------------------------|--------------|------------------------|----------------|------------------|-----------|----------------|-----|--------------|-------------|
| Batch 5071721 - SW846 5030 Soil      | (high level) |                        |                |                  |           |                |     |              |             |
| Blank (5071721-BLK1)                 |              |                        | Prepared .     | & Analyze        | d: 28-Jul | 05             |     |              |             |
| 1,1-Dichloropropene                  | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| cis-1,3-Dichloropropene              | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| trans-1,3-Dichloropropene            | BRL          | 1.0 µg/kg wet          |                |                  |           |                |     |              |             |
| Ethylbenzene                         | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| Hexachlorobutadiene                  | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| 2-Hexanone (MBK)                     | BRL          | 10.0 μg/kg wet         |                |                  |           |                |     |              |             |
| Isopropylbenzene                     | BRL          | 1.0 µg/kg wet          |                |                  |           |                |     |              |             |
| 4-Isopropyltoluene                   | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| Methyl tert-butyl ether              | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| 4-Methyl-2-pentanone (MIBK)          | BRL          | 10.0 μg/kg wet         |                |                  |           |                |     |              |             |
| Methylene chloride                   | BRL          | 10.0 μg/kg wet         |                |                  |           |                |     |              |             |
| Naphthalene                          | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| n-Propylbenzene                      | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| Styrene                              | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| 1,1,1,2-Tetrachloroethane            | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| 1,1,2,2-Tetrachloroethane            | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| Tetrachloroethene                    | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| Toluene                              | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| 1,2,3-Trichlorobenzene               | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| 1,2,4-Trichlorobenzene               | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| 1,1,1-Trichloroethane                | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| 1,1,2-Trichloroethane                | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| Trichloroethene                      | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| Trichlorofluoromethane (Freon 11)    | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| 1,2,3-Trichloropropane               | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| 1,2,4-Trimethylbenzene               | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| 1,3,5-Trimethylbenzene               | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| Vinyl chloride                       | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| m,p-Xylene                           | BRL          | 2.0 μg/kg wet          |                |                  |           |                |     |              |             |
| o-Xylene                             | BRL          | 1.0 μg/kg wet          |                |                  |           |                |     |              |             |
| Surrogate: 4-Bromofluorobenzene      | 53.8         | μg/kg wet              | 50.0           |                  | 108       | 70-130         |     |              |             |
| Surrogate: Toluene-d8                | 47.2         | μg/kg wet              | 50.0           |                  | 94.4      | 70-130         |     |              |             |
| Surrogate: 1,2-Dichloroethane-d4     | 61.1         | μg/kg wet              | 50.0           |                  | 122       | 70-130         |     |              |             |
| Surrogate: Dibromofluoromethane      | 50.4         | μg/kg wet              | 50.0           |                  | 101       | 70-130         |     |              |             |
| •                                    | 50.7         | P8.18                  | Prepared of    | & Analyze        |           |                |     |              |             |
| LCS (5071721-BS1)                    | 22.2         | ua/lea wet             | 20.0           | K Anaiyzo        | 112       | 19.4-217       |     |              |             |
| Acetone                              | 22.3<br>15.5 | μg/kg wet              | 20.0           |                  | 77.5      | 70-130         |     |              |             |
| Acrylonitrile<br>Benzene             | 20.0         | μg/kg wet              | 20.0           |                  | 100       | 70-130         |     |              |             |
| Bromobenzene                         | 21.1         | μg/kg wet<br>μg/kg wet | 20.0           |                  | 106       | 70-130         |     |              |             |
| Bromochloromethane                   | 18.3         | μg/kg wet              | 20.0           |                  | 91.5      | 70-130         |     |              |             |
| Bromodichloromethane                 | 23.1         | μg/kg wet              | 20.0           |                  | 116       | 70-130         |     |              |             |
| Bromoform                            | 20.5         | μg/kg wet              | 20.0           |                  | 102       | 70-130         |     |              |             |
| Bromomethane                         | 19.6         | μg/kg wet              | 20.0           |                  | 98.0      | 48.6-171       |     |              |             |
| 2-Butanone (MEK)                     | 21.9         | μg/kg wet              | 20.0           |                  | 110       | 16.5-153       |     |              |             |
| n-Butylbenzene                       | 18.7         | μg/kg wet              | 20.0           |                  | 93.5      | 70-130         |     |              |             |
| sec-Butylbenzene                     | 21.4         | μg/kg wet              | 20.0           |                  | 107       | 70-130         |     |              |             |
| tert-Butylbenzene                    | 22.4         | μg/kg wet              | 20.0           |                  | 112       | 70-130         |     |              |             |
| Carbon disulfide                     | 12.6         | μg/kg wet              | 20.0           |                  | 63.0      | 70-130         |     |              | QC-2        |
| Carbon disumde  Carbon tetrachloride | 16.8         | μg/kg wet              | 20.0           |                  | 84.0      | 70-130         |     |              | ~~ <b>~</b> |
| Chlorobenzene                        | 20.6         | μg/kg wet              | 20.0           |                  | 103       | 70-130         |     |              |             |
| Chloroethane                         | 16.2         | μg/kg wet              | 20.0           |                  | 81.0      | 68.8-140       |     |              |             |
| Chloroform                           | 18.7         | μg/kg wet              | 20.0           |                  | 93.5      | 70-130         |     |              |             |
| Chloromethane                        | 21.2         | μg/kg wet              | 20.0           |                  | 106       | 70-130         |     |              |             |
| 2-Chlorotoluene                      | 21.5         | μg/kg wet              | 20.0           |                  | 108       | 70-130         |     |              |             |

| Analyte(s)                        | Result       | *RDL Units | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD  | RPD<br>Limit | Flag |
|-----------------------------------|--------------|------------|----------------|------------------|------------|----------------|------|--------------|------|
| Batch 5071721 - SW846 5030 Soil   | (high level) |            |                |                  |            |                |      |              |      |
| LCS (5071721-BS1)                 |              |            | Prepared       | & Analyze        | d: 28-Jul  | -05            |      |              |      |
| 4-Chlorotoluene                   | 21.4         | μg/kg wet  | 20.0           |                  | 107        | 70-130         |      |              |      |
| 1,2-Dibromo-3-chloropropane       | 19.8         | μg/kg wet  | 20.0           |                  | 99.0       | 70-130         |      |              |      |
| Dibromochloromethane              | 13.7         | μg/kg wet  | 20.0           |                  | 68.5       | 53.9-173       |      |              |      |
| 1,2-Dibromoethane (EDB)           | 18.8         | μg/kg wet  | 20.0           |                  | 94.0       | 70-130         |      |              |      |
| Dibromomethane                    | 18.4         | μg/kg wet  | 20.0           |                  | 92.0       | 70-130         |      |              |      |
| 1.2-Dichlorobenzene               | 19.6         | μg/kg wet  | 20.0           |                  | 98.0       | 70-130         |      |              |      |
| 1,3-Dichlorobenzene               | 20.9         | μg/kg wet  | 20.0           |                  | 104        | 70-130         |      |              |      |
| 1,4-Dichlorobenzene               | 19.4         | μg/kg wet  | 20.0           |                  | 97.0       | 70-130         |      |              |      |
| Dichlorodifluoromethane (Freon12) | 25.7         | μg/kg wet  | 20.0           |                  | 128        | 59.6-150       |      |              |      |
| 1,1-Dichloroethane                | 18.8         | μg/kg wet  | 20.0           |                  | 94.0       | 70-130         |      |              |      |
| 1,2-Dichloroethane                | 23.2         | μg/kg wet  | 20.0           |                  | 116        | 70-130         |      |              |      |
| 1.1-Dichloroethene                | 16.4         | μg/kg wet  | 20.0           |                  | 82.0       | 70-130         |      |              |      |
| cis-1,2-Dichloroethene            | 18.5         | μg/kg wet  | 20.0           |                  | 92.5       | 70-130         |      |              |      |
| trans-1,2-Dichloroethene          | 17.2         | μg/kg wet  | 20.0           |                  | 86.0       | 70-130         |      |              |      |
| 1,2-Dichloropropane               | 18.2         | μg/kg wet  | 20.0           |                  | 91.0       | 70-130         |      |              |      |
| 1,3-Dichloropropane               | 17.6         |            | 20.0           |                  | 88.0       | 70-130         |      |              |      |
|                                   | 27.2         | μg/kg wet  |                |                  | 136        | 70-130         |      |              | QC-2 |
| 2,2-Dichloropropane               |              | μg/kg wet  | 20.0           |                  | 111        |                |      |              | QC-2 |
| 1,1-Dichloropropene               | 22.2         | μg/kg wet  | 20.0           |                  |            | 70-130         |      |              |      |
| cis-1,3-Dichloropropene           | 21.9         | μg/kg wet  | 20.0           |                  | 110        | 70-130         |      |              |      |
| trans-1,3-Dichloropropene         | 23.0         | μg/kg wet  | 20.0           |                  | 115        | 70-130         |      |              |      |
| Ethylbenzene                      | 20.0         | μg/kg wet  | 20.0           |                  | 100        | 70-130         |      |              |      |
| Hexachlorobutadiene               | 23.9         | μg/kg wet  | 20.0           |                  | 120        | 67.9-157       |      |              |      |
| 2-Hexanone (MBK)                  | 21.7         | μg/kg wet  | 20.0           |                  | 108        | 70-130         |      |              |      |
| Isopropylbenzene                  | 20.9         | μg/kg wet  | 20.0           |                  | 104        | 70-130         |      |              |      |
| 4-Isopropyltoluene                | 20.4         | μg/kg wet  | 20.0           |                  | 102        | 70-130         |      |              |      |
| Methyl tert-butyl ether           | 18.7         | μg/kg wet  | 20.0           |                  | 93.5       | 70-130         |      |              |      |
| 4-Methyl-2-pentanone (MIBK)       | 17.8         | μg/kg wet  | 20.0           |                  | 89.0       | 43.9-154       |      |              |      |
| Methylene chloride                | 16.2         | μg/kg wet  | 20.0           |                  | 81.0       | 70-130         |      |              |      |
| Naphthalene                       | 17.0         | μg/kg wet  | 20.0           |                  | 85.0       | 70-130         |      |              |      |
| n-Propylbenzene                   | 20.8         | μg/kg wet  | 20.0           |                  | 104        | 70-130         |      |              |      |
| Styrene                           | 20.2         | μg/kg wet  | 20.0           |                  | 101        | 70-130         |      |              |      |
| 1,1,1,2-Tetrachloroethane         | 21.5         | μg/kg wet  | 20.0           |                  | 108        | 70-130         |      |              |      |
| 1,1,2,2-Tetrachloroethane         | 17.1         | μg/kg wet  | 20.0           |                  | 85.5       | 70-130         |      |              |      |
| Tetrachloroethene                 | 20.6         | μg/kg wet  | 20.0           |                  | 103        | 70-130         |      |              |      |
| Toluene                           | 17.3         | μg/kg wet  | 20.0           |                  | 86.5       | 70-130         |      |              |      |
| 1,2,3-Trichlorobenzene            | 20.4         | μg/kg wet  | 20.0           |                  | 102        | 70-130         |      |              |      |
| 1,2,4-Trichlorobenzene            | 20.6         | μg/kg wet  | 20.0           |                  | 103        | 70-130         |      |              |      |
| 1,1,1-Trichloroethane             | 23.7         | μg/kg wet  | 20.0           |                  | 118        | 70-130         |      |              |      |
| 1,1,2-Trichloroethane             | 17.4         | μg/kg wet  | 20.0           |                  | 87.0       | 70-130         |      |              |      |
| Trichloroethene                   | 20.0         | μg/kg wet  | 20.0           |                  | 100        | 70-130         |      |              |      |
| Trichlorofluoromethane (Freon 11) | 21.6         | μg/kg wet  | 20.0           |                  | 108        | 70-138         |      |              |      |
| 1,2,3-Trichloropropane            | 18.9         | μg/kg wet  | 20.0           |                  | 94.5       | 70-130         |      |              |      |
| 1,2,4-Trimethylbenzene            | 21.6         | μg/kg wet  | 20.0           |                  | 108        | 70-130         |      |              |      |
| 1,3,5-Trimethylbenzene            | 21.9         | μg/kg wet  | 20.0           |                  | 110        | 70-130         |      |              |      |
| Vinyl chloride                    | 25.6         | μg/kg wet  | 20.0           |                  | 128        | 70-130         |      |              |      |
| m,p-Xylene                        | 40.2         | μg/kg wet  | 40.0           |                  | 100        | 70-130         |      |              |      |
| o-Xylene                          | 21.6         | μg/kg wet  | 20.0           |                  | 108        | 70-130         |      |              |      |
| Surrogate: 4-Bromofluorobenzene   | 53.0         | μg/kg wet  | 50.0           |                  | 106        | 70-130         |      |              |      |
| Surrogate: Toluene-d8             | 46.4         | μg/kg wet  | 50.0           |                  | 92.8       | 70-130         |      |              |      |
| Surrogate: 1,2-Dichloroethane-d4  | 54.2         | μg/kg wet  | 50.0           |                  | 108        | 70-130         |      |              |      |
| Surrogate: Dibromofluoromethane   | 49.5         | μg/kg wet  | 50.0           |                  | 99.0       | 70-130         |      |              |      |
| LCS Dup (5071721-BSD1)            |              |            | Prepared of    | & Analvze        | d: 28-Jul- | 05             |      |              |      |
| Acetone                           | 19.6         | μg/kg wet  | 20.0           |                  | 98.0       | 19.4-217       | 13.3 | 50           |      |
| Acrylonitrile                     | 15.8         | μg/kg wet  | 20.0           |                  | 79.0       | 70-130         | 1.92 | 25           |      |

| Analyte(s)                        | Result       | *RDL Units             | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits   | RPD           | RPD<br>Limit | Flag |
|-----------------------------------|--------------|------------------------|----------------|------------------|-------------|------------------|---------------|--------------|------|
| Batch 5071721 - SW846 5030 Soil   | (high level) |                        |                |                  |             |                  |               |              |      |
| LCS Dup (5071721-BSD1)            |              |                        | Prepared       | & Analyze        | ed: 28-Jul  | -05              |               |              |      |
| Benzene                           | 19.6         | μg/kg wet              | 20.0           |                  | 98.0        | 70-130           | 2.02          | 25           |      |
| Bromobenzene                      | 21.3         | μg/kg wet              | 20.0           |                  | 106         | 70-130           | 0.00          | 25           |      |
| Bromochloromethane                | 18.0         | μg/kg wet              | 20.0           |                  | 90.0        | 70-130           | 1.65          | 25           |      |
| Bromodichloromethane              | 22.5         | μg/kg wet              | 20.0           |                  | 112         | 70-130           | 3.51          | 25           |      |
| Bromoform                         | 21.2         | μg/kg wet              | 20.0           |                  | 106         | 70-130           | 3.85          | 25           |      |
| Bromomethane                      | 19.2         | μg/kg wet              | 20.0           |                  | 96.0        | 48.6-171         | 2.06          | 50           |      |
| 2-Butanone (MEK)                  | 18.4         | μg/kg wet              | 20.0           |                  | 92.0        | 16.5-153         | 17.8          | 50           |      |
| n-Butylbenzene                    | 19.4         | μg/kg wet              | 20.0           |                  | 97.0        | 70-130           | 3.67          | 25           |      |
| sec-Butylbenzene                  | 21.8         | μg/kg wet              | 20.0           |                  | 109         | 70-130           | 1.85          | 25           |      |
| tert-Butylbenzene                 | 22.6         | μg/kg wet              | 20.0           |                  | 113         | 70-130           | 0.889         | 25           |      |
| Carbon disulfide                  | 12.4         | μg/kg wet              | 20.0           |                  | 62.0        | 70-130           | 1.60          | 25           | QC-2 |
| Carbon tetrachloride              | 16.3         | μg/kg wet              | 20.0           |                  | 81.5        | 70-130           | 3.02          | 25           |      |
| Chlorobenzene                     | 20.3         | μg/kg wet              | 20.0           |                  | 102         | 70-130           | 0.976         | 25           |      |
| Chloroethane                      | 16.8         | μg/kg wet              | 20.0           |                  | 84.0        | 68.8-140         | 3.64          | 50           |      |
| Chloroform                        | 17.9         | μg/kg wet              | 20.0           |                  | 89.5        | 70-130           | 4.37          | 25           |      |
| Chloromethane                     | 21.2         | μg/kg wet              | 20.0           |                  | 106         | 70-130           | 0.00          | 25           |      |
| 2-Chlorotoluene                   | 21.7         | μg/kg wet              | 20.0           |                  | 108         | 70-130           | 0.00          | 25           |      |
| 4-Chlorotoluene                   | 21.0         | ' μg/kg wet            | 20.0           |                  | 105         | 70-130           | 1.89          | 25           |      |
| 1,2-Dibromo-3-chloropropane       | 20.4         | μg/kg wet              | 20.0           |                  | 102         | 70-130           | 2.99          | 25           |      |
| Dibromochloromethane              | 13.7         | μg/kg wet              | 20.0           |                  | 68.5        | 53.9-173         | 0.00          | 50           |      |
| 1,2-Dibromoethane (EDB)           | 19.1         | μg/kg wet              | 20.0           |                  | 95.5        | 70-130           | 1.58          | 25           |      |
| Dibromomethane                    | 18.7         | μg/kg wet              | 20.0           |                  | 93.5        | 70-130           | 1.62          | 25           |      |
| 1,2-Dichlorobenzene               | 19.5         | μg/kg wet              | 20.0           |                  | 97.5        | 70-130           | 0.512         | 25           |      |
| 1,3-Dichlorobenzene               | 21.1         | μg/kg wet              | 20.0           |                  | 106         | 70-130           | 1.90          | 25           |      |
| 1,4-Dichlorobenzene               | 19.5         | μg/kg wet              | 20.0           |                  | 97.5        | 70-130           | 0.514         | 25           |      |
| Dichlorodifluoromethane (Freon12) | 25.8         | μg/kg wet              | 20.0           |                  | 129         | 59.6-150         | 0.778         | 50           |      |
| 1,1-Dichloroethane                | 18.5         | μg/kg wet              | 20.0           |                  | 92.5        | 70-130           | 1.61          | 25           |      |
| 1,2-Dichloroethane                | 22.6         | μg/kg wet              | 20.0           |                  | 113         | 70-130           | 2.62          | 25           |      |
| 1,1-Dichloroethene                | 16.7         | μg/kg wet              | 20.0           |                  | 83.5        | 70-130           | 1.81          | 25           |      |
| cis-1,2-Dichloroethene            | 17.8         | μg/kg wet              | 20.0           |                  | 89.0        | 70-130           | 3.86          | 25           |      |
| trans-1,2-Dichloroethene          | 17.4         | μg/kg wet              | 20.0           |                  | 87.0        | 70-130           | 1.16          | 25           |      |
| 1,2-Dichloropropane               | 17.8         | μg/kg wet              | 20.0           |                  | 89.0        | 70-130           | 2.22          | 25           |      |
| 1,3-Dichloropropane               | 18.4         | μg/kg wet              | 20.0           |                  | 92.0        | 70-130           | 4.44          | 25           |      |
| 2,2-Dichloropropane               | 26.8         | μg/kg wet              | 20.0           |                  | 134         | 70-130           | 1.48          | 25           | QC-2 |
| 1,1-Dichloropropene               | 22.1         | μg/kg wet              | 20.0           |                  | 110         | 70-130           | 0.905         | 25           |      |
| cis-1,3-Dichloropropene           | 21.6         | μg/kg wet              | 20.0           |                  | 108         | 70-130           | 1.83          | 25           |      |
| trans-1,3-Dichloropropene         | 22.4         | μg/kg wet              | 20.0           |                  | 112         | 70-130           | 2.64          | 25           |      |
| Ethylbenzene                      | 20.1         | μg/kg wet              | 20.0           |                  | 100         | 70-130           | 0.00          | 25           |      |
| Hexachlorobutadiene               | 24.6         | μg/kg wet              | 20.0           |                  | 123         | 67.9-157         | 2.47          | 50           |      |
| 2-Hexanone (MBK)                  | 18.9         | μg/kg wet              | 20.0           |                  | 94.5        | 70-130           | 13.3          | 25           |      |
| Isopropylbenzene                  | 20.7         | μg/kg wet              | 20.0           |                  | 104         | 70-130           | 0.00          | 25           |      |
| 4-Isopropyltoluene                | 20.7         | μg/kg wet              | 20.0           |                  | 104         | 70-130           | 1.94          | 25           |      |
| Methyl tert-butyl ether           | 18.8         | μg/kg wet              | 20.0           |                  | 94.0        | 70-130           | 0.533         | 25           |      |
| 4-Methyl-2-pentanone (MIBK)       | 18.0         | μg/kg wet              | 20.0           |                  | 90.0        | 43.9-154         | 1.12          | 50<br>25     |      |
| Methylene chloride                | 16.1         | μg/kg wet              | 20.0           |                  | 80.5        | 70-130           | 0.619         | 25           |      |
| Naphthalene                       | 18.2         | μg/kg wet              | 20.0           |                  | 91.0        | 70-130           | 6.82          | 25<br>25     |      |
| n-Propylbenzene                   | 20.0         | μg/kg wet              | 20.0           |                  | 100<br>100  | 70-130<br>70-130 | 3.92<br>0.995 | 25<br>25     |      |
| Styrene                           | 20.1<br>21.2 | μg/kg wet              | 20.0<br>20.0   |                  | 106         | 70-130<br>70-130 | 1.87          | 25<br>25     |      |
| 1,1,1,2-Tetrachloroethane         |              | μg/kg wet              | 20.0           |                  | 86.0        | 70-130<br>70-130 | 0.583         | 25           |      |
| 1,1,2,2-Tetrachloroethane         | 17.2         | μg/kg wet              | 20.0           |                  | 86.0<br>106 | 70-130<br>70-130 | 2.87          | 25<br>25     |      |
| Tetrachloroethene Tolyana         | 21.2<br>17.0 | μg/kg wet              | 20.0           |                  | 85.0        | 70-130<br>70-130 | 1.75          | 25<br>25     |      |
| Toluene 1,2,3-Trichlorobenzene    | 20.7         | μg/kg wet<br>μg/kg wet | 20.0           |                  | 104         | 70-130           | 1.73          | 25           |      |
|                                   |              |                        |                |                  | 104         | 70-130           | 0.00          | 25           |      |
| 1,2,4-Trichlorobenzene            | 20.6         | μg/kg wet              | 20.0           |                  | 103         | /0-130           | V.VV          | ۷3           |      |

| Analyte(s)                                            | Result       | *RDL Units                     | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits   | RPD  | RPD<br>Limit | Flag |
|-------------------------------------------------------|--------------|--------------------------------|----------------|------------------|-------------|------------------|------|--------------|------|
| Batch 5071721 - SW846 5030 Soil (hi                   | gh level)    |                                |                |                  |             |                  |      |              |      |
| LCS Dup (5071721-BSD1)                                |              |                                | Prepared       | & Analyze        | ed: 28-Jul- | 05               |      |              |      |
| 1,1,1-Trichloroethane                                 | 23.6         | μg/kg wet                      | 20.0           |                  | 118         | 70-130           | 0.00 | 25           |      |
| 1,1,2-Trichloroethane                                 | 17.1         | μg/kg wet                      | 20.0           |                  | 85.5        | 70-130           | 1.74 | 25           |      |
| Trichloroethene                                       | 18.7         | μg/kg wet                      | 20.0           |                  | 93.5        | 70-130           | 6.72 | 25           |      |
| Trichlorofluoromethane (Freon 11)                     | 21.3         | μg/kg wet                      | 20.0           |                  | 106         | 70-138           | 1.87 | 50           |      |
| 1,2,3-Trichloropropane                                | 19.8         | μg/kg wet                      | 20.0           |                  | 99.0        | 70-130           | 4.65 | 25           |      |
| 1,2,4-Trimethylbenzene                                | 22.9         | μg/kg wet                      | 20.0           |                  | 114         | 70-130           | 5.41 | 25           |      |
| 1,3,5-Trimethylbenzene                                | 22.4         | μg/kg wet                      | 20.0           |                  | 112         | 70-130           | 1.80 | 25           |      |
| Vinyl chloride                                        | 25.7         | μg/kg wet                      | 20.0           |                  | 128         | 70-130           | 0.00 | 25           |      |
| m,p-Xylene                                            | 41.6         | μg/kg wet                      | 40.0           |                  | 104         | 70-130           | 3.92 | 25           |      |
| o-Xylene                                              | 22.0         | μg/kg wet                      | 20.0           |                  | 110         | 70-130           | 1.83 | 25           |      |
| Surrogate: 4-Bromofluorobenzene                       | 53.2         | μg/kg wet                      | 50.0           |                  | 106         | 70-130           |      |              |      |
| Surrogate: Toluene-d8                                 | 46.8         | μg/kg wet                      | 50.0           |                  | 93.6        | 70-130           |      |              |      |
| Surrogate: 1,2-Dichloroethane-d4                      | 52.7         | μg/kg wet                      | 50.0           |                  | 105         | 70-130           |      |              |      |
| Surrogate: Dibromofluoromethane                       | 50.4         | μg/kg wet                      | 50.0           |                  | 101         | 70-130           |      |              |      |
| Matrix Spike (5071721-MS1)                            | Sou          | rce: SA31398-21                | Prepared       | & Analyze        | d: 28-Jul-  | 05               |      |              |      |
| Benzene                                               | 18.9         | μg/kg dry                      | 20.0           | BRL              | 94.5        | 70-130           | -    |              |      |
| Chlorobenzene                                         | 19.3         | μg/kg dry                      | 20.0           | BRL              | 96.5        | 70-130           |      |              |      |
| 1,1-Dichloroethene                                    | 16.2         | μg/kg dry                      | 20.0           | BRL              | 81.0        | 70-130           |      |              |      |
| Toluene                                               | 17.5         | μg/kg dry                      | 20.0           | BRL              | 87.5        | 70-130           |      |              |      |
| Trichloroethene                                       | 17.9         | μg/kg dry                      | 20.0           | BRL              | 89.5        | 70-130           |      |              |      |
|                                                       | 54.7         | μg/kg dry                      | 50.0           |                  | 109         | 70-130           |      |              |      |
| Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8 | 34.7<br>49.9 | μg/kg dry<br>μg/kg dry         | 50.0           |                  | 99.8        | 70-130<br>70-130 |      |              |      |
| Surrogate: 1,2-Dichloroethane-d4                      | 49.9<br>54.9 | μg/kg dry<br>μg/kg dry         | 50.0           |                  | 110         | 70-130           |      |              |      |
| Surrogate: Dibromofluoromethane                       | 49.8         | μg/kg dry                      | 50.0           |                  | 99.6        | 70-130           |      |              |      |
| Matrix Spike Dup (5071721-MSD1)                       |              | rce: SA31398-21                |                | & Analyze        |             |                  |      |              |      |
| Benzene                                               | 19.4         | μg/kg dry                      | 20.0           | · BRL            | 97.0        | 70-130           | 2.61 | 30           | •    |
| Chlorobenzene                                         | 21.0         | μg/kg dry                      | 20.0           | BRL              | 105         | 70-130           | 8.44 | 30           |      |
| 1,1-Dichloroethene                                    | 15.5         | μg/kg dry                      | 20.0           | BRL              | 77.5        | 70-130           | 4.42 | 30           |      |
| Toluene                                               | 18.7         | μg/kg dry                      | 20.0           | BRL              | 93.5        | 70-130           | 6.63 | 30           |      |
| Trichloroethene                                       | 18.2         | μg/kg dry                      | 20.0           | BRL              | 91.0        | 70-130           | 1.66 | 30           |      |
| Surrogate: 4-Bromofluorobenzene                       | 53.5         | μg/kg dry                      | 50.0           |                  | 107         | 70-130           |      |              |      |
| Surrogate: Toluene-d8                                 | 50.4         | μg/kg dry                      | 50.0           |                  | 101         | 70-130           |      |              |      |
| Surrogate: 1,2-Dichloroethane-d4                      | 50.4         | μg/kg dry                      | 50.0           |                  | 101         | 70-130           |      |              |      |
| Surrogate: Dibromofluoromethane                       | 48.9         | μg/kg dry                      | 50.0           |                  | 97.8        | 70-130           |      |              |      |
| Batch 5071804 - SW846 5030 Soil (hi                   |              | F-6·57                         |                |                  |             |                  |      |              |      |
| •                                                     | B            |                                | Prepared       | & Analyze        | d: 20_Iul_  | 05               |      |              |      |
| Blank (5071804-BLK1)                                  | BRL          | 20.0 μg/kg wet                 | Trepared       | & Allalyze       | .u. 27-Jul- | 0,5              |      |              |      |
| Acetone                                               | BRL          | 20.0 μg/kg wet                 |                |                  |             | •                |      |              |      |
| Acrylonitrile Benzene                                 | BRL          | 1.0 μg/kg wet                  |                |                  |             |                  |      |              |      |
| Bromobenzene                                          | BRL          | 1.0 μg/kg wet                  |                |                  |             |                  |      |              |      |
| Bromochloromethane                                    | BRL          | 1.0 μg/kg wet                  |                |                  |             |                  |      |              |      |
| Bromodichloromethane                                  | BRL          | 1.0 µg/kg wet                  |                |                  |             |                  |      |              |      |
| Bromoform                                             | BRL          | 1.0 µg/kg wet                  |                |                  |             |                  |      |              |      |
| Bromomethane                                          | BRL          | 2.0 µg/kg wet                  |                |                  |             |                  |      |              |      |
| 2-Butanone (MEK)                                      | BRL          | 10.0 μg/kg wet                 |                |                  |             |                  |      |              |      |
| n-Butylbenzene                                        | BRL          | 1.0 μg/kg wet                  |                |                  |             |                  |      |              |      |
| sec-Butylbenzene                                      | BRL          | 1.0 μg/kg wet                  |                |                  |             |                  |      |              |      |
| tert-Butylbenzene                                     | BRL          | 1.0 μg/kg wet                  |                |                  |             |                  |      |              |      |
| Carbon disulfide                                      | BRL          | 5.0 μg/kg wet                  |                |                  |             |                  |      |              |      |
|                                                       |              |                                |                |                  |             |                  |      |              |      |
| Carbon tetrachloride                                  | BRL          | 1.0 μg/kg wet                  |                |                  |             |                  |      |              |      |
|                                                       | BRL<br>BRL   | 1.0 μg/kg wet<br>1.0 μg/kg wet |                |                  |             |                  |      |              |      |

| Analyte(s)                        | Result       | *RDL Units     | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits   | RPD | RPD<br>Limit | Flag |
|-----------------------------------|--------------|----------------|----------------|------------------|--------------|------------------|-----|--------------|------|
| Batch 5071804 - SW846 5030 Soil   | (high level) | •              |                |                  |              |                  |     |              |      |
| Blank (5071804-BLK1)              |              |                | Prepared       | & Analyze        | d: 29-Jul-   | 05               |     |              |      |
| Chloroform                        | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| Chloromethane                     | BRL          | 2.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 2-Chlorotoluene                   | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 4-Chlorotoluene                   | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 1,2-Dibromo-3-chloropropane       | BRL          | 2.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| Dibromochloromethane              | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 1,2-Dibromoethane (EDB)           | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| Dibromomethane                    | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 1,2-Dichlorobenzene               | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 1,3-Dichlorobenzene               | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 1,4-Dichlorobenzene               | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| Dichlorodifluoromethane (Freon12) | BRL          | 2.0 µg/kg wet  |                |                  |              |                  |     |              |      |
| 1,1-Dichloroethane                | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 1,2-Dichloroethane                | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 1,1-Dichloroethene                | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| cis-1,2-Dichloroethene            | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| trans-1,2-Dichloroethene          | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 1,2-Dichloropropane               | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 1,3-Dichloropropane               | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 2,2-Dichloropropane               | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 1,1-Dichloropropene               | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| cis-1,3-Dichloropropene           | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| trans-1,3-Dichloropropene         | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| Ethylbenzene                      | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| Hexachlorobutadiene               | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 2-Hexanone (MBK)                  | BRL          | 10.0 μg/kg wet |                |                  |              |                  |     |              |      |
| Isopropylbenzene                  | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 4-Isopropyltoluene                | BRL          | 1.0 µg/kg wet  |                |                  |              |                  |     |              |      |
| Methyl tert-butyl ether           | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 4-Methyl-2-pentanone (MIBK)       | BRL          | 10.0 μg/kg wet |                |                  |              |                  |     |              |      |
| Methylene chloride                | BRL          | 10.0 μg/kg wet |                |                  |              |                  |     |              |      |
| Naphthalene                       | BRL          | 1.0 μg/kg wet  |                | *                |              |                  |     |              |      |
| n-Propylbenzene                   | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| Styrene                           | BRL          | 1.0 µg/kg wet  |                |                  |              |                  |     |              |      |
| 1,1,1,2-Tetrachloroethane         | BRL          | 1.0 µg/kg wet  |                |                  |              |                  |     |              |      |
| 1,1,2,2-Tetrachloroethane         | BRL          | 1.0 µg/kg wet  |                |                  |              |                  |     |              |      |
| Tetrachloroethene                 | BRL          | 1.0 µg/kg wet  |                |                  |              |                  |     |              |      |
| Toluene                           | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 1,2,3-Trichlorobenzene            | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 1,2,4-Trichlorobenzene            | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 1,1,1-Trichloroethane             | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 1,1,2-Trichloroethane             | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| Trichloroethene                   | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| Trichlorofluoromethane (Freon 11) | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 1,2,3-Trichloropropane            | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 1,2,4-Trimethylbenzene            | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| 1,3,5-Trimethylbenzene            | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| Vinyl chloride                    | BRL          | 1.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| m,p-Xylene                        | BRL          | 2.0 μg/kg wet  |                |                  |              |                  |     |              |      |
| o-Xylene                          | BRL          | 1.0 μg/kg wet  | 50.0           |                  | 00.0         | 70 /20           |     |              |      |
| Surrogate: 4-Bromofluorobenzene   | 49.9         | μg/kg wet      | 50.0           |                  | 99.8         | 70-130           |     |              |      |
| Surrogate: Toluene-d8             | 47.8         | μg/kg wet      | 50.0           |                  | 95.6<br>99.0 | 70-130<br>70-130 |     |              |      |
| Surrogate: 1,2-Dichloroethane-d4  | 49.5         | μg/kg wet      | 50.0           |                  | 99.0<br>94.0 | 70-130<br>70-130 |     |              |      |
| Surrogate: Dibromofluoromethane   | 47.0         | μg/kg wet      | 50.0           |                  | 74.U         | /0-150           |     |              |      |

| Analyte(s)                        | Result       | *RDL Units | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits     | RPD | RPD<br>Limit | Flag |
|-----------------------------------|--------------|------------|----------------|------------------|--------------|--------------------|-----|--------------|------|
| Batch 5071804 - SW846 5030 Soil   | (high level) |            |                |                  |              |                    |     |              |      |
| LCS (5071804-BS1)                 |              |            | Prepared       | & Analyze        | d: 29-Jul-   | -05                |     |              |      |
| Acetone                           | 18.0         | μg/kg wet  | 20.0           |                  | 90.0         | 19.4-217           |     |              |      |
| Acrylonitrile                     | 18.2         | μg/kg wet  | 20.0           |                  | 91.0         | 70-130             |     |              |      |
| Benzene                           | 19.7         | μg/kg wet  | 20.0           |                  | 98.5         | 70-130             |     |              |      |
| Bromobenzene                      | 20.5         | μg/kg wet  | 20.0           |                  | 102          | 70-130             |     |              |      |
| Bromochloromethane                | 20.0         | μg/kg wet  | 20.0           |                  | 100          | 70-130             |     |              |      |
| Bromodichloromethane              | 20.5         | μg/kg wet  | 20.0           |                  | 102          | 70-130             |     |              |      |
| Bromoform                         | 18.3         | μg/kg wet  | 20.0           |                  | 91.5         | 70-130             |     |              |      |
| Bromomethane                      | 23.5         | μg/kg wet  | 20.0           |                  | 118          | 48.6-171           |     |              |      |
| 2-Butanone (MEK)                  | 19.4         | μg/kg wet  | 20.0           |                  | 97.0         | 16.5-153           |     |              |      |
| n-Butylbenzene                    | 20.0         | μg/kg wet  | 20.0           |                  | 100          | 70-130             |     |              |      |
| sec-Butylbenzene                  | 20.2         | μg/kg wet  | 20.0           |                  | 101          | 70-130             |     |              |      |
| tert-Butylbenzene                 | 20.0         | μg/kg wet  | 20.0           |                  | 100          | 70-130             |     |              |      |
| Carbon disulfide                  | 19.1         | μg/kg wet  | 20.0           |                  | 95.5         | 70-130             |     |              |      |
| Carbon tetrachloride              | 18.6         | μg/kg wet  | 20.0           |                  | 93.0         | 70-130             |     |              |      |
| Chlorobenzene                     | 19.9         | μg/kg wet  | 20.0           |                  | 99.5         | 70-130             |     |              |      |
| Chloroethane                      | 21.2         | μg/kg wet  | 20.0           |                  | 106          | 68.8-140           |     |              |      |
| Chloroform                        | 19.6         | μg/kg wet  | 20.0           |                  | 98.0         | 70-130             |     |              |      |
| Chloromethane                     | 23.4         | μg/kg wet  | 20.0           |                  | 117          | 70-130             |     |              |      |
| 2-Chlorotoluene                   | 19.8         | μg/kg wet  | 20.0           |                  | 99.0         | 70-130             |     |              |      |
| 4-Chlorotoluene                   | 19.7         | μg/kg wet  | 20.0           |                  | 98.5         | 70-130             |     |              |      |
| 1,2-Dibromo-3-chloropropane       | 17.2         | μg/kg wet  | 20.0           |                  | 86.0         | 70-130             |     |              |      |
| Dibromochloromethane              | 19.2         | μg/kg wet  | 20.0           |                  | 96.0         | 53.9-173           |     |              |      |
| 1,2-Dibromoethane (EDB)           | 19.4         | μg/kg wet  | 20.0           |                  | 97.0         | 70-130             |     |              |      |
| Dibromomethane                    | 20.2         | μg/kg wet  | 20.0           |                  | 101          | 70-130             |     |              |      |
| 1,2-Dichlorobenzene               | 21.2         | μg/kg wet  | 20.0           |                  | 106          | 70-130             |     |              |      |
| 1,3-Dichlorobenzene               | 21.0         | μg/kg wet  | 20.0           | ,                | 105          | 70-130             |     |              |      |
| 1,4-Dichlorobenzene               | 21.0         | μg/kg wet  | 20.0           |                  | 105          | 70-130             |     |              |      |
| Dichlorodifluoromethane (Freon12) | 27.4         | μg/kg wet  | 20.0           |                  | 137          | 59.6-150           |     |              |      |
| 1,1-Dichloroethane                | 19.5         | μg/kg wet  | 20.0           |                  | 97.5         | 70-130             |     |              |      |
| 1,2-Dichloroethane                | 19.6         | μg/kg wet  | 20.0           |                  | 98.0         | 70-130             |     |              |      |
| 1,1-Dichloroethene                | 19.3         | μg/kg wet  | 20.0           |                  | 96.5         | 70-130             |     |              |      |
| cis-1,2-Dichloroethene            | 20.3         | μg/kg wet  | 20.0           |                  | 102          | 70-130             |     |              |      |
| trans-1,2-Dichloroethene          | 19.2         | μg/kg wet  | 20.0           |                  | 96.0         | 70-130             |     |              |      |
| 1,2-Dichloropropane               | 20.4         | μg/kg wet  | 20.0           |                  | 102          | 70-130             |     |              |      |
| 1,3-Dichloropropane               | 20.6         | μg/kg wet  | 20.0           |                  | 103          | 70-130             |     |              |      |
| 2,2-Dichloropropane               | 24.0         | μg/kg wet  | 20.0           |                  | 120          | 70-130             |     |              |      |
| 1,1-Dichloropropene               | 20.5         | μg/kg wet  | 20.0           |                  | 102          | 70-130             |     |              |      |
| cis-1,3-Dichloropropene           | 20.8         | μg/kg wet  | 20.0           |                  | 104          | 70-130             |     |              |      |
| trans-1,3-Dichloropropene         | 21.0         | μg/kg wet  | 20.0           |                  | 105          | 70-130             |     |              |      |
| Ethylbenzene                      | 19.4         | μg/kg wet  | 20.0           |                  | 97.0         | 70-130             |     |              |      |
| Hexachlorobutadiene               | 21.5         | μg/kg wet  | 20.0           |                  | 108          | 67.9-157           |     |              |      |
| 2-Hexanone (MBK)                  | 23.3         | μg/kg wet  | 20.0           |                  | 116          | 70-130             |     |              |      |
| Isopropylbenzene                  | 18.8         | μg/kg wet  | 20.0           |                  | 94.0         | 70-130             |     |              |      |
| 4-Isopropyltoluene                | 21.1         | μg/kg wet  | 20.0           |                  | 106          | 70-130             |     |              |      |
| Methyl tert-butyl ether           | 20.0         | μg/kg wet  | 20.0           |                  | 100          | 70-130             |     |              |      |
| 4-Methyl-2-pentanone (MIBK)       | 16.1         | μg/kg wet  | 20.0           |                  | 80.5<br>105  | 43.9-154<br>70-130 |     |              |      |
| Methylene chloride                | 21.0         | μg/kg wet  | 20.0           |                  | 103          | 70-130<br>70-130   |     |              |      |
| Naphthalene                       | 20.2         | μg/kg wet  | 20.0           |                  | 98.0         | 70-130<br>70-130   |     |              |      |
| n-Propylbenzene                   | 19.6         | μg/kg wet  | 20.0           |                  | 98.0<br>96.5 | 70-130<br>70-130   |     |              |      |
| Styrene                           | 19.3         | μg/kg wet  | 20.0<br>20.0   |                  | 96.3<br>102  | 70-130<br>70-130   |     |              |      |
| 1,1,2-Tetrachloroethane           | 20.4         | μg/kg wet  |                |                  | 102          | 70-130<br>70-130   |     |              |      |
| 1,1,2,2-Tetrachloroethane         | 20.7         | μg/kg wet  | 20.0           |                  | 104          | 70-130<br>70-130   |     |              |      |
| Tetrachloroethene                 | 20.3         | μg/kg wet  | 20.0           |                  | 96.5         | 70-130<br>70-130   |     |              |      |
| Toluene                           | 19.3         | μg/kg wet  | 20.0           |                  | 30.3         | /0-130             |     |              |      |

| Analyte(s)                              | Result       | *RDL Units             | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits   | RPD           | RPD<br>Limit | Flag |
|-----------------------------------------|--------------|------------------------|----------------|------------------|------------|------------------|---------------|--------------|------|
| Batch 5071804 - SW846 5030 Soil         | (high level) |                        |                | <u></u>          |            |                  |               |              |      |
| LCS (5071804-BS1)                       |              |                        | Prepared       | & Analyze        | ed: 29-Jul | -05              |               |              |      |
| 1,2,3-Trichlorobenzene                  | 20.8         | μg/kg wet              | 20.0           |                  | 104        | 70-130           |               |              |      |
| 1,2,4-Trichlorobenzene                  | 20.6         | μg/kg wet              | 20.0           |                  | 103        | 70-130           |               |              |      |
| 1,1,1-Trichloroethane                   | 19.4         | μg/kg wet              | 20.0           |                  | 97.0       | 70-130           |               |              |      |
| 1,1,2-Trichloroethane                   | 20.5         | μg/kg wet              | 20.0           |                  | 102        | 70-130           |               |              |      |
| Trichloroethene                         | 18.4         | μg/kg wet              | 20.0           |                  | 92.0       | 70-130           |               |              |      |
| Trichlorofluoromethane (Freon 11)       | 20.9         | μg/kg wet              | 20.0           |                  | 104        | 70-138           |               |              |      |
| 1,2,3-Trichloropropane                  | 19.6         | μg/kg wet              | 20.0           |                  | 98.0       | 70-130           |               |              |      |
| 1,2,4-Trimethylbenzene                  | 19.6         | μg/kg wet              | 20.0           |                  | 98.0       | 70-130           |               |              |      |
| 1,3,5-Trimethylbenzene                  | 19.4         | μg/kg wet              | 20.0           |                  | 97.0       | 70-130           |               |              |      |
| Vinyl chloride                          | 23.5         | μg/kg wet              | 20.0           |                  | 118        | 70-130           |               |              |      |
| m,p-Xylene                              | 40.8         | μg/kg wet              | 40.0           |                  | 102        | 70-130           |               |              |      |
| o-Xylene                                | 20.0         | μg/kg wet              | 20.0           |                  | 100        | 70-130           |               |              |      |
| Surrogate: 4-Bromofluorobenzene         | 48.4         | μg/kg wet              | 50.0           |                  | 96.8       | 70-130           |               |              |      |
| Surrogate: Toluene-d8                   | 47.6         | μg/kg wet              | 50.0           |                  | 95.2       | 70-130           |               |              |      |
| Surrogate: 1,2-Dichloroethane-d4        | 51.0         | μg/kg wet              | 50.0           |                  | 102        | 70-130           |               |              |      |
| Surrogate: Dibromofluoromethane         | 48.7         | μg/kg wet              | 50.0           |                  | 97.4       | 70-130           |               |              |      |
| LCS Dup (5071804-BSD1)                  |              |                        | Prepared       | & Analyze        | d: 29-Jul  | -05              |               |              |      |
| Acetone                                 | 21.2         | μg/kg wet              | 20.0           | <u> </u>         | 106        | 19.4-217         | 16.3          | 50           |      |
| Acrylonitrile                           | 17.7         | μg/kg wet              | 20.0           |                  | 88.5       | 70-130           | 2.79          | 25           |      |
| Benzene                                 | 20.0         | μg/kg wet              | 20.0           |                  | 100        | 70-130           | 1.51          | 25           |      |
| Bromobenzene                            | 21.7         | μg/kg wet              | 20.0           |                  | 108        | 70-130           | 5.71          | 25           |      |
| Bromochloromethane                      | 20.7         | μg/kg wet              | 20.0           |                  | 104        | 70-130           | 3.92          | 25           |      |
| Bromodichloromethane                    | 20.4         | μg/kg wet              | 20.0           |                  | 102        | 70-130           | 0.00          | 25           |      |
| Bromoform                               | 18.8         | μg/kg wet              | 20.0           |                  | 94.0       | 70-130           | 2.70          | 25           |      |
| Bromomethane                            | 23.2         | μg/kg wet              | 20.0           |                  | 116        | 48.6-171         | 1.71          | 50           |      |
| 2-Butanone (MEK)                        | 14.1         | μg/kg wet              | 20.0           |                  | 70.5       | 16.5-153         | 31.6          | 50           |      |
| n-Butylbenzene                          | 21.3         | μg/kg wet              | 20.0           |                  | 106        | 70-130           | 5.83          | 25           |      |
| sec-Butylbenzene                        | 21.7         | μg/kg wet              | 20.0           |                  | 108        | 70-130           | 6.70          | 25           |      |
| tert-Butylbenzene                       | 21.8         | μg/kg wet              | 20.0           |                  | 109        | 70-130           | 8.61          | 25           |      |
| Carbon disulfide                        | 19.7         | μg/kg wet              | 20.0           |                  | 98.5       | 70-130           | 3.09          | 25           |      |
| Carbon tetrachloride                    | 18.9         | μg/kg wet              | 20.0           |                  | 94.5       | 70-130           | 1.60          | 25           |      |
| Chlorobenzene                           | 21.2         | μg/kg wet              | 20.0           |                  | 106        | 70-130           | 6.33          | 25           |      |
| Chloroethane                            | 21.8         | μg/kg wet              | 20.0           |                  | 109        | 68.8-140         | 2.79          | 50           |      |
| Chloroform                              | 19.7         | μg/kg wet              | 20.0           |                  | 98.5       | 70-130           | 0.509         | 25           |      |
| Chloromethane                           | 25.0         | μg/kg wet              | 20.0           |                  | 125        | 70-130           | 6.61          | 25           |      |
| 2-Chlorotoluene                         | 21.5         | μg/kg wet              | 20.0           |                  | 108        | 70-130           | 8.70          | 25           |      |
| 4-Chlorotoluene                         | 21.2         | μg/kg wet              | 20.0           |                  | 106        | 70-130           | 7.33          | 25           |      |
| 1,2-Dibromo-3-chloropropane             | 17.9         | μg/kg wet              | 20.0           |                  | 89.5       | 70-130           | 3.99          | 25           |      |
| Dibromochloromethane                    | 19.8         | μg/kg wet              | 20.0           |                  | 99.0       | 53.9-173         | 3.08          | 50           |      |
| 1,2-Dibromoethane (EDB)                 | 19.8         | μg/kg wet              | 20.0           |                  | 99.0       | 70-130           | 2.04          | 25           |      |
| Dibromomethane                          | 19.4         | μg/kg wet              | 20.0           |                  | 97.0       | 70-130           | 4.04          | 25           |      |
| 1,2-Dichlorobenzene                     | 21.4         | μg/kg wet              | 20.0           |                  | 107        | 70-130           | 0.939         | 25           |      |
| 1,3-Dichlorobenzene                     | 22.8         | μg/kg wet              | 20.0           |                  | 114        | 70-130           | 8.22          | 25           |      |
| 1,4-Dichlorobenzene                     | 21.9         | μg/kg wet              | 20.0           |                  | 110        | 70-130           | 4.65          | 25           |      |
| Dichlorodifluoromethane (Freon12)       | 28.3         | μg/kg wet              | 20.0           |                  | 142        | 59.6-150         | 3.58          | 50           |      |
| 1,1-Dichloroethane                      | 20.1         | μg/kg wet              | 20.0           |                  | 100        | 70-130           | 2.53          | 25           |      |
| 1,2-Dichloroethane                      | 19.9         | μg/kg wet              | 20.0           |                  | 99.5       | 70-130           | 1.52          | 25<br>25     |      |
| 1,1-Dichloroethene                      | 19.4         | .μg/kg wet             | 20.0           |                  | 97.0       | 70-130           | 0.517         | 25<br>25     |      |
| cis-1,2-Dichloroethene                  | 20.0         | μg/kg wet              | 20.0           |                  | 100        | 70-130           | 1.98          | 25<br>25     |      |
| trans-1,2-Dichloroethene                | 20.0         | μg/kg wet              | 20.0           |                  | 100<br>103 | 70-130<br>70-130 | 4.08<br>0.976 | 25<br>25     |      |
| 1,2-Dichloropropane                     | 20.6         | μg/kg wet              | 20.0<br>20.0   |                  | 103        | 70-130<br>70-130 | 0.976         | 25<br>25     |      |
| 1,3-Dichloropropane                     | 20.3<br>24.3 | μg/kg wet              | 20.0           |                  | 102        | 70-130           | 1.65          | 25           |      |
| 2,2-Dichloropropane 1,1-Dichloropropene | 24.3<br>20.7 | μg/kg wet<br>μg/kg wet | 20.0           |                  | 104        | 70-130           | 1.03          | 25           |      |

| Analyte(s)                        | Result       | *RDL Units     | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Flag |
|-----------------------------------|--------------|----------------|----------------|------------------|-------------|----------------|-------|--------------|------|
| Batch 5071804 - SW846 5030 Soil   | (high level) |                |                |                  |             |                |       | .,           |      |
| LCS Dup (5071804-BSD1)            |              |                | Prepared       | & Analyze        | ed: 29-Jul- | -05            |       |              |      |
| cis-1,3-Dichloropropene           | 20.9         | μg/kg wet      | 20.0           |                  | 104         | 70-130         | 0.00  | 25           |      |
| trans-1,3-Dichloropropene         | 21.0         | μg/kg wet      | 20.0           |                  | 105         | 70-130         | 0.00  | 25           |      |
| Ethylbenzene                      | 21.0         | μg/kg wet      | 20.0           |                  | 105         | 70-130         | 7.92  | 25           |      |
| Hexachlorobutadiene               | 22.9         | μg/kg wet      | 20.0           |                  | 114         | 67.9-157       | 5.41  | 50           |      |
| 2-Hexanone (MBK)                  | 26.5         | μg/kg wet      | 20.0           |                  | 132         | 70-130         | 12.9  | 25           | QC-1 |
| Isopropylbenzene                  | 20.2         | μg/kg wet      | 20.0           |                  | 101         | 70-130         | 7.18  | 25           |      |
| 4-Isopropyltoluene                | 22.5         | μg/kg wet      | 20.0           |                  | 112         | 70-130         | 5.50  | 25           |      |
| Methyl tert-butyl ether           | 19.8         | μg/kg wet      | 20.0           |                  | 99.0        | 70-130         | 1.01  | 25           |      |
| 4-Methyl-2-pentanone (MIBK)       | 16.5         | μg/kg wet      | 20.0           |                  | 82.5        | 43.9-154       | 2.45  | 50           |      |
| Methylene chloride                | 21.4         | μg/kg wet      | 20.0           |                  | 107         | 70-130         | 1.89  | 25           |      |
| Naphthalene                       | 20.5         | μg/kg wet      | 20.0           |                  | 102         | 70-130         | 0.985 | 25           |      |
| n-Propylbenzene                   | 21.3         | μg/kg wet      | 20.0           |                  | 106         | 70-130         | 7.84  | 25           |      |
| Styrene                           | 20.9         | μg/kg wet      | 20.0           |                  | 104         | 70-130         | 7.48  | 25           |      |
| 1,1,1,2-Tetrachloroethane         | 20.8         | μg/kg wet      | 20.0           |                  | 104         | 70-130         | 1.94  | 25           |      |
| 1,1,2,2-Tetrachloroethane         | 21.1         | μg/kg wet      | 20.0           |                  | 106         | 70-130         | 1.90  | 25           |      |
| Tetrachloroethene                 | 21.2         | μg/kg wet      | 20.0           |                  | 106         | 70-130         | 3.85  | 25           |      |
| Toluene                           | 20.1         | μg/kg wet      | 20.0           |                  | 100         | 70-130         | 3.56  | 25           |      |
| 1,2,3-Trichlorobenzene            | 21.6         | μg/kg wet      | 20.0           |                  | 108         | 70-130         | 3.77  | 25           |      |
| 1,2,4-Trichlorobenzene            | 21.2         | μg/kg wet      | 20.0           |                  | 106         | 70-130         | 2.87  | 25           |      |
| 1,1,1-Trichloroethane             | 19.6         | μg/kg wet      | 20.0           |                  | 98.0        | 70-130         | 1.03  | 25           |      |
| 1,1,2-Trichloroethane             | 21.1         | μg/kg wet      | 20.0           |                  | 106         | 70-130         | 3.85  | 25           |      |
| Trichloroethene                   | 19.7         | μg/kg wet      | 20.0           |                  | 98.5        | 70-130         | 6.82  | 25           |      |
| Trichlorofluoromethane (Freon 11) | 20.7         | μg/kg wet      | 20.0           |                  | 104         | 70-138         | 0.00  | 50           |      |
| 1,2,3-Trichloropropane            | 19.9         | μg/kg wet      | 20.0           |                  | 99.5        | 70-130         | 1.52  | 25           |      |
| 1,2,4-Trimethylbenzene            | 21.0         | μg/kg wet      | 20.0           |                  | 105         | 70-130         | 6.90  | 25           |      |
| 1,3,5-Trimethylbenzene            | 21.1         | μg/kg wet      | 20.0           |                  | 106         | 70-130         | 8.87  | 25           |      |
| Vinyl chloride                    | 21.5         | μg/kg wet      | 20.0           |                  | 108         | 70-130         | 8.85  | 25           |      |
| m,p-Xylene                        | 44.2         | μg/kg wet      | 40.0           |                  | 110         | 70-130         | 7.55  | 25           |      |
| o-Xylene                          | 21.8         | μg/kg wet      | 20.0           |                  | 109         | 70-130         | 8.61  | 25           |      |
| Surrogate: 4-Bromofluorobenzene   | 50.6         | μg/kg wet      | 50.0           |                  | 101         | 70-130         |       |              |      |
| Surrogate: Toluene-d8             | 49.0         | μg/kg wet      | 50.0           |                  | 98.0        | 70-130         |       |              |      |
| Surrogate: 1,2-Dichloroethane-d4  | 49.8         | μg/kg wet      | 50.0           |                  | 99.6        | 70-130         |       |              |      |
| Surrogate: Dibromofluoromethane   | 48.3         | μg/kg wet      | 50.0           |                  | 96.6        | 70-130         |       |              |      |
| Matrix Spike (5071804-MS1)        | Sour         | ce: SA31539-11 | Prepared       | & Analyze        | d: 29-Jul-  | -05            |       |              |      |
| Benzene                           | 19.4         | μg/kg dry      | 20.0           | BRL              | 97.0        | 70-130         |       |              |      |
| Chlorobenzene                     | 20.3         | μg/kg dry      | 20.0           | BRL              | 102         | 70-130         |       |              |      |
| 1,1-Dichloroethene                | 19.5         | μg/kg dry      | 20.0           | BRL              | 97.5        | 70-130         |       |              |      |
| Toluene                           | 20.3         | μg/kg dry      | 20.0           | 0.684            | 98.1        | 70-130         |       |              |      |
| Trichloroethene                   | 19.6         | μg/kg dry      | 20.0           | BRL              | 98.0        | 70-130         |       |              |      |
| Surrogate: 4-Bromofluorobenzene   | 50.5         | μg/kg dry      | 50.0           |                  | 101         | 70-130         |       |              |      |
| Surrogate: Toluene-d8             | 48.3         | μg/kg dry      | 50.0           |                  | 96.6        | 70-130         |       |              |      |
| Surrogate: 1,2-Dichloroethane-d4  | 51.7         | μg/kg dry      | 50.0           |                  | 103         | 70-130         |       |              |      |
| Surrogate: Dibromofluoromethane   | 49.1         | μg/kg dry      | 50.0           |                  | 98.2        | 70-130         |       |              |      |
| Matrix Spike (5071804-MS2)        | Sour         | ce: SA31539-12 | Prepared       | & Analyze        | d: 29-Jul-  | -05            |       |              |      |
| Benzene                           | 20.8         | μg/kg dry      | 20.0           | BRL              | 104         | 70-130         |       |              |      |
| Chlorobenzene                     | 21.5         | μg/kg dry      | 20.0           | BRL              | 108         | 70-130         |       |              |      |
| 1,1-Dichloroethene                | 21.7         | μg/kg dry      | 20.0           | BRL              | 108         | 70-130         |       |              |      |
| Toluene                           | 21.9         | μg/kg dry      | 20.0           | 0.845            | 105         | 70-130         |       |              |      |
| Trichloroethene                   | 19.6         | μg/kg dry      | 20.0           | BRL              | 98.0        | 70-130         |       |              |      |
| Surrogate: 4-Bromofluorobenzene   | 48.6         | μg/kg dry      | 50.0           |                  | 97.2        | 70-130         |       |              |      |
| Surrogate: Toluene-d8             | 48.9         | μg/kg dry      | 50.0           |                  | 97.8        | 70-130         |       |              |      |
| Surrogate: 1,2-Dichloroethane-d4  | 52.5         | μg/kg dry      | 50.0           |                  | 105         | 70-130         |       |              |      |
| Surrogate: Dibromofluoromethane   | 50.4         | μg/kg dry      | 50.0           |                  | 101         | 70-130         |       |              |      |

| Analyte(s)                          | Result       | *RDL Units      | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD  | RPD<br>Limit | Flag |
|-------------------------------------|--------------|-----------------|----------------|------------------|-------------|----------------|------|--------------|------|
| Batch 5071804 - SW846 5030 Soil (hi | igh level)   |                 | <u>.</u>       |                  |             |                |      |              |      |
| Matrix Spike Dup (5071804-MSD1)     | Sou          | rce: SA31539-11 | Prepared       |                  |             |                |      |              |      |
| Benzene                             | 20.0         | μg/kg dry       | 20.0           | BRL              | 100         | 70-130         | 3.05 | 30           |      |
| Chlorobenzene                       | 20.9         | μg/kg dry       | 20.0           | BRL              | 104         | 70-130         | 1.94 | 30           |      |
| 1,1-Dichloroethene                  | 20.0         | μg/kg dry       | 20.0           | BRL              | 100         | 70-130         | 2.53 | 30           |      |
| Toluene                             | 21.2         | μg/kg dry       | 20.0           | 0.684            | 103         | 70-130         | 4.87 | 30           |      |
| Trichloroethene                     | 20.2         | μg/kg dry       | 20.0           | BRL              | 101         | 70-130         | 3.02 | 30           |      |
| Surrogate: 4-Bromofluorobenzene     | 50.4         | μg/kg dry       | 50.0           |                  | 101         | 70-130         |      |              |      |
| Surrogate: Toluene-d8               | 49.6         | μg/kg dry       | 50.0           |                  | 99.2        | 70-130         |      |              |      |
| Surrogate: 1,2-Dichloroethane-d4    | 52.1         | μg/kg dry       | 50.0           |                  | 104         | 70-130         |      |              |      |
| Surrogate: Dibromofluoromethane     | 49.7         | μg/kg dry       | 50.0           |                  | 99.4        | 70-130         |      |              |      |
| Matrix Spike Dup (5071804-MSD2)     | Sou          | rce: SA31539-12 | Prepared       | & Analyze        | ed: 29-Jul- | -05            |      |              |      |
| Benzene                             | 19.6         | μg/kg dry       | 20.0           | BRL              | 98.0        | 70-130         | 5.94 | 30           | -    |
| Chlorobenzene                       | 20.4         | μg/kg dry       | 20.0           | BRL              | 102         | 70-130         | 5.71 | 30           |      |
| 1,1-Dichloroethene                  | 19.0         | μg/kg dry       | 20.0           | BRL              | 95.0        | 70-130         | 12.8 | 30           |      |
| Toluene                             | 21.1         | μg/kg dry       | 20.0           | 0.845            | 101         | 70-130         | 3.88 | 30           |      |
| Trichloroethene                     | 19.1         | μg/kg dry       | 20.0           | BRL              | 95.5        | 70-130         | 2.58 | 30           |      |
| Surrogate: 4-Bromofluorobenzene     | 49.5         | μg/kg dry       | 50.0           |                  | 99.0        | 70-130         |      |              |      |
| Surrogate: Toluene-d8               | 49.3         | μg/kg dry       | 50.0           |                  | 98.6        | 70-130         |      |              |      |
| Surrogate: 1,2-Dichloroethane-d4    | 50.6         | μg/kg dry       | 50.0           |                  | 101         | 70-130         |      |              |      |
| Surrogate: Dibromofluoromethane     | 47.8         | μg/kg dry       | 50.0           |                  | 95.6        | 70-130         |      |              |      |
| _                                   | ractable Pet | roleum Hydroca  |                | Quality (        | Control     |                |      |              |      |
|                                     |              |                 |                | •                |             |                |      |              |      |
| Analyte(s)                          | Result       | *RDL Units      | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD  | RPD<br>Limit | Flag |
| Batch 5071700 - SW846 3545A         |              |                 | <del></del>    |                  |             |                |      |              |      |
| Blank (5071700-BLK1)                |              |                 | Prepared:      | 28-Jul-05        | Analyzed    | l: 01-Aug-(    | )5   |              |      |
| Fuel Oil #2                         | BRL          | 13.3 mg/kg wet  |                |                  |             |                |      |              |      |
| Fuel Oil #4                         | BRL          | 13.3 mg/kg wet  |                |                  |             |                |      |              |      |
| Fuel Oil #6                         | BRL          | 13.3 mg/kg wet  |                |                  |             |                |      |              |      |
| Motor Oil                           | BRL          | 13.3 mg/kg wet  |                |                  |             |                |      |              |      |
| Aviation Fuel                       | BRL          | 13.3 mg/kg wet  |                |                  |             |                |      |              |      |
| Unidentified                        | BRL          | 13.3 mg/kg wet  |                |                  |             |                |      |              |      |
| Other Oil                           | BRL          | 13.3 mg/kg wet  |                |                  |             |                |      |              |      |
| Diesel Range Organics (DRO)         | BRL          | 13.3 mg/kg wet  |                |                  |             |                |      |              |      |
| Surrogate: 1-Chlorooctadecane       | 1.80         | mg/kg wet       | 3.33           |                  | 54.1        | 40-140         |      |              |      |
| LCS (5071700-BS1)                   |              |                 | Prepared:      | 28-Jul-05        | Analyzed    | : 01-Aug-0     | )5   |              |      |
| Fuel Oil #2                         | 623          | 13.3 mg/kg wet  | 667            |                  | 93.4        | 40-140         |      |              |      |
| Surrogate: 1-Chlorooctadecane       | 6.57         | mg/kg wet       | 3.33           |                  | 197         | 40-140         |      |              | S-0  |
| <b>Duplicate (5071700-DUP1)</b>     | Sou          | rce: SA31301-01 | Prepared:      | 28-Jul-05        | Analyzed    | : 01-Aug-0     | )5   |              |      |
| Fuel Oil #2                         | 6520         | 27.1 mg/kg dry  | •              | 6380             |             |                | 2.17 | 50           |      |
| Fuel Oil #4                         | BRL          | 27.1 mg/kg dry  |                | BRL              |             |                |      | 50           |      |
| Fuel Oil #6                         | BRL          | 27.1 mg/kg dry  |                | BRL              |             |                |      | 50           |      |
| Motor Oil                           | BRL          | 27.1 mg/kg dry  |                | BRL              |             |                |      | 50           |      |
| Aviation Fuel                       | BRL          | 27.1 mg/kg dry  |                | BRL              |             |                |      | 50           |      |
| Unidentified                        | BRL          | 27.1 mg/kg dry  |                | BRL              |             |                |      | 50           |      |
| Other Oil                           | BRL          | 27.1 mg/kg dry  |                | BRL              |             |                |      | 50           |      |
| Diesel Range Organics (DRO)         | 6520         | 27.1 mg/kg dry  |                | 6380             |             |                | 2.17 | 50           |      |
| Surrogate: 1-Chlorooctadecane       | 76.6         | mg/kg dry       | 3.39           |                  | NR          | 40-140         |      |              | S-0  |
|                                     |              |                 |                |                  |             |                |      |              |      |

## **General Chemistry Parameters - Quality Control**

| Analyte(s)                          | Result | *RDL Units      | Spike<br>Level                 | Source<br>Result | %REC      | %REC<br>Limits | RPD   | RPD<br>Limit | Flag    |
|-------------------------------------|--------|-----------------|--------------------------------|------------------|-----------|----------------|-------|--------------|---------|
| Batch 5071771 - General Preparation |        |                 |                                |                  |           |                |       |              |         |
| Duplicate (5071771-DUP1)            | Sou    | rce: SA31618-02 | Prepared                       | & Analyze        |           |                |       |              |         |
| % Solids                            | 89.3   | %               |                                | 89.2             |           |                | 0.112 | 20           |         |
| Batch 5071795 - General Preparation |        |                 |                                |                  |           |                |       |              |         |
| Duplicate (5071795-DUP1)            | Sou    | rce: SA31622-08 | Prepared                       | & Analyze        | d: 29-Jul | -05            |       |              |         |
| % Solids                            | 93.5   | %               |                                | 93.8             |           |                | 0.320 | 20           |         |
| Batch 5080235 - General Preparation |        |                 |                                |                  |           |                |       |              |         |
| Blank (5080235-BLK1)                |        |                 | Prepared                       | & Analyze        | ed: 02-Au | g-05           |       |              |         |
| Fractional Organic Carbon           | BRL    | 100 N/A         |                                |                  |           |                |       |              |         |
| Blank (5080235-BLK2)                |        |                 | Prepared                       | & Analyze        | d: 02-Au  | g-05           |       |              |         |
| Fractional Organic Carbon           | BRL    | 100 N/A         |                                |                  |           |                |       |              |         |
| Duplicate (5080235-DUP1)            | Sou    | rce: SA31364-01 | Prepared                       | & Analyze        | g-05      |                |       |              |         |
| Fractional Organic Carbon           | 0.0039 | 0.0001 N/A      |                                | 0.0039           |           |                | 0.00  | 30           | <u></u> |
| Reference (5080235-SRM1)            |        |                 | Prepared                       | & Analyze        | d: 02-Au  | g-05           |       |              |         |
| Fractional Organic Carbon           | 5200   | 100 N/A         | 5370                           |                  | 96.8      | 56-144         |       |              |         |
| Reference (5080235-SRM2)            |        |                 | Prepared & Analyzed: 02-Aug-05 |                  |           |                |       |              |         |
| Fractional Organic Carbon           | 1090   | 100 N/A         | 1000                           |                  | 109       | 85-115         |       |              |         |
| Reference (5080235-SRM3)            |        |                 | Prepared                       | & Analyze        | d: 02-Au  | g-05           |       |              |         |
| Fractional Organic Carbon           | 1050   | 100 N/A         | 1000                           |                  | 105       | 85-115         |       |              |         |

### **Notes and Definitions**

| *TPH  | Calculated as                                                                                                                                                                      |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QC-1  | Analyte out of acceptance range.                                                                                                                                                   |
| QC-2  | Analyte out of acceptance range in QC spike but no reportable concentration present in sample.                                                                                     |
| R-05  | The sample was diluted due to the presence of high levels of non-target analytes resulting in elevated reporting limits.                                                           |
| S-02  | The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.                         |
| vext2 | Field extracted                                                                                                                                                                    |
| VOCI  | O The VOC field preserved soil sample is not within the 1:1 weight to volume ratio as recommended by SW846 methods 5030 and 5035 but may be within the 1:1 volume to volume ratio. |
| BRL   | Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit                                                                                                       |
| dry   | Sample results reported on a dry weight basis                                                                                                                                      |
| NR    | Not Reported                                                                                                                                                                       |
| RPD   | Relative Percent Difference                                                                                                                                                        |

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

### Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc.

Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel

Fuel Oil #4 - includes #4 fuel oil

Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil

Motor Oil - includes virgin and waste automobile oil

Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha

Aviation Fuel - includes kerosene, Jet A and JP-4

Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as \*TPH (Calculated as).

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Method Blank: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Brown

| Report To: ECS-Richmond | SPECTRUM ANALYTICAL, INC.  Featuring HANIBAL TECHNOLOGY |
|-------------------------|---------------------------------------------------------|
|                         | CH/                                                     |

Project Mgr.:

P.O. No.: (3)

RQN:

Sampler(s): Location: \_

K

Johns bus

State: X

# AIN OF CUSTODY RECORD

Invoice To: \_ ECS- Aggwan Page \_\_\_ h of h

Site Name: S21

Project No.: \_

# SASISISIS

| Ruch TAT - Date Meeded: | $\square$ Standard TAT - 7 to 10 business days | Special Handling: |
|-------------------------|------------------------------------------------|-------------------|
| Jeeded:                 | o 10 business da                               | landling:         |
|                         | Ϋ́E                                            |                   |

| 3     | Š        |                       |                                            |                                              | 7                                         |
|-------|----------|-----------------------|--------------------------------------------|----------------------------------------------|-------------------------------------------|
| 3.0:3 | t9th0t-% | otherwise instructed. | · Samples disposed of after 60 days unless | Min. 24-hour notification needed for rushes. | · All TATs subject to laboratory approval |

|                                   |                   |             |                                   |      |          |      |      |         |          |         |         |                      |        | 5                                      |                                                                          |                                                              |             |                                                                       |                                                                                                              |
|-----------------------------------|-------------------|-------------|-----------------------------------|------|----------|------|------|---------|----------|---------|---------|----------------------|--------|----------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------|-------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Condition upo                     | EDD Format        | ☐ E-mail to | K Fax result                      |      | <<br>70  | 1 69 | \$O  | 9       | Qo       | 93      | Ş       | \$                   | 2      | J81365 D1                              | Lab Id:                                                                  |                                                              | X1=         | DW=Drinkin                                                            | 1=Na <sub>2</sub> S2O <sub>3</sub><br>7=CH <sub>3</sub> OH                                                   |
| Condition upon receipt: Laked 🗆 A | 1                 |             | K Fax results when available to ( |      | SB-5-8d  |      |      | SB- 5-8 | 38-S-4/2 | 58-2-11 | 5B-2-3d | SB-2-3               | SB-1-8 | SB-1-2                                 | Sample Id:                                                               | GGGrab C=0                                                   |             | DW=Drinking Water GW=Groundwater<br>O=Oil SW= Surface Water SO=Soil   | 2=HCl 3=H <sub>2</sub> SO <sub>4</sub> 4=HNO <sub>3</sub> 5=NaOH 6=Ascorbic Acid<br>8= NaHSO <sub>4</sub> 9= |
| ☐ Ambient ☐ °C                    |                   |             | Ĭ                                 |      | 4        |      | , '  |         |          |         |         |                      |        | 7/18/05                                | Date:                                                                    | C=Composite                                                  |             | 2                                                                     | 4=HNO <sub>3</sub> 5=Na                                                                                      |
| Ü                                 |                   |             | 434-6076                          |      | 10:30    | 2:0  | 1:30 | 10:20   | 10:10    | 0.8     | 9:50    | 9:45                 | 9:30   | 9:15                                   | Time:                                                                    |                                                              |             | WW=Wastewater                                                         | OH 6=Ascorb                                                                                                  |
|                                   | / <sub>/</sub> /~ | į           |                                   |      | 9 4      |      |      |         |          |         |         |                      | 1      | So So                                  | Type<br>Matrix                                                           |                                                              |             | ***************************************                               | ic Acid                                                                                                      |
|                                   | 1/7               | 2           | Meinquisned by                    |      | <u></u>  |      | _    |         |          |         |         |                      |        | 7/8                                    | Prese                                                                    |                                                              |             |                                                                       | 1                                                                                                            |
|                                   |                   | 400         | )<br>Juisne                       | - 4  | <u>a</u> |      |      |         |          |         |         |                      | 1      | تو                                     | # of V                                                                   |                                                              |             |                                                                       |                                                                                                              |
| •                                 |                   | 6           | ے<br>چُڑے                         |      | <u> </u> |      |      | _       |          |         | 7       | $\overline{\lambda}$ | 11     | ــــــــــــــــــــــــــــــــــــــ | # of A<br># of C                                                         |                                                              |             |                                                                       | Containers:                                                                                                  |
|                                   | •                 | 21/2        |                                   | 7    | 3        |      | ,    |         |          |         |         | `                    |        |                                        | # of Pl                                                                  |                                                              |             | 3                                                                     | iners:                                                                                                       |
|                                   | •                 | 8           | 0                                 |      |          |      |      |         |          |         |         |                      |        |                                        |                                                                          |                                                              |             |                                                                       | •                                                                                                            |
|                                   |                   | -           |                                   | :    | 4        | メ    | X    | メ       | 人        | *       | メ       | 水                    | X      | 人                                      | 803                                                                      | 211                                                          | 3           |                                                                       |                                                                                                              |
|                                   | 6                 |             |                                   | -    | <b>少</b> | 7    | ナ    | メ       | ×        | ス       | メ       | 7                    | ろ      | <u>メ</u>                               | 802<br>TPH<br>F.                                                         | 1-                                                           | SR          | 0                                                                     |                                                                                                              |
|                                   | \ <u>\</u>        |             | Ke                                | 7    |          | X    |      |         |          |         |         |                      | X      |                                        | F,                                                                       | O,C                                                          |             |                                                                       | <br>                                                                                                         |
| ;<br>}                            |                   | <u>`</u>    | Keceived by:                      | -  - |          |      |      |         |          |         |         |                      |        |                                        |                                                                          |                                                              | <del></del> |                                                                       | Analyses:                                                                                                    |
|                                   |                   |             | by:                               | -    |          |      |      |         |          |         |         |                      |        |                                        |                                                                          |                                                              |             |                                                                       | es:                                                                                                          |
|                                   | musselle          |             |                                   |      |          |      |      |         |          |         |         |                      |        |                                        |                                                                          |                                                              |             |                                                                       |                                                                                                              |
| / /                               | 76/165            |             | Date:                             |      |          |      |      |         |          |         |         |                      |        |                                        | as per MADEP CAM Section 2.0?  Yes No (Response required for CAM report) | ☐ Provide MCP CAM Report  Were all field OC requirements met |             | State specific reporting standards  If applicable, please list below. | QA Reporting Notes:<br>(check if needed)                                                                     |
| •                                 | 198°              |             | ı ime:                            | 7    |          |      |      |         |          |         |         | j                    |        |                                        | AM Section 2.0?  No for CAM report)                                      | M Report                                                     |             | rting standards ase list below.                                       | ng Notes:                                                                                                    |

| 18  |
|-----|
| 365 |



Report To: \_

# CHAIN OF CUSTODY RECORD

Invoice To: \_

Site Name: SZI Ray St

| Special Handling:<br>Standard TAT - 7 to 10 business day. |
|-----------------------------------------------------------|
|-----------------------------------------------------------|

|   | Project No.: 08-204 262 |                       |                                            |                                              |                                           |                           |                                        |                   |
|---|-------------------------|-----------------------|--------------------------------------------|----------------------------------------------|-------------------------------------------|---------------------------|----------------------------------------|-------------------|
| • | 204 266                 | otherwise instructed. | · Samples disposed of after 60 days unless | Min. 24-hour notification needed for rushes. | · All TATs subject to laboratory approval | ☐ Rush TAT - Date Needed: | ☐ Standard TAT - 7 to 10 business days | Special Handling: |

|                                 |             |           |                                     |  | <br> |             |                                       | ,       |         | ,            | $\sim$   |                                                                          |                                                             |               |                                                                      |                                                                                       | ,             |           |
|---------------------------------|-------------|-----------|-------------------------------------|--|------|-------------|---------------------------------------|---------|---------|--------------|----------|--------------------------------------------------------------------------|-------------------------------------------------------------|---------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------|-----------|
| Condition upon                  | EDD Format  | E-mail to | Fax results                         |  |      |             | R                                     | Ĉ       | (3      | وا           | 1865-11  | Lab Id:                                                                  |                                                             | X1=           | DW=Drinking Water O=Oil SW= Surface                                  | 1=Na <sub>2</sub> S2O <sub>3</sub> 2<br>7=CH <sub>3</sub> OH 8:                       | Project Mgr.: |           |
| Condition upon receipt: Liced A |             |           | Fax results when available to (XXX) |  |      | SB-17-5     | SB-17-2%                              | SB-18-6 | SB-18-4 | 53-3-7       | SB-13-4  | Sample Id:                                                               | G=Grab C=(                                                  |               | GW=G<br>Water                                                        | 2=HCl 3=H <sub>2</sub> SO <sub>4</sub> 4=HNO <sub>3</sub><br>8= NaHSO <sub>4</sub> 9= | for Mill      |           |
| □ Ambient □°C                   |             |           | r<br>r                              |  |      | 1           |                                       |         | 7/19/05 | 7            | 7/18/05  | Date:                                                                    | C=Composite                                                 |               | S                                                                    | 1=HNO <sub>3</sub> 5=NaOH                                                             | 44            |           |
| (v)                             |             |           | 7107 45                             |  |      | 8:15        | \$100<br>00:8                         | 101.00  | 0£;b    | 3:30         | 3:00     | Time:                                                                    |                                                             | 1             | WW=Wastewater<br>=Sludge A=Air                                       | OH 6=Ascorbic Acid                                                                    | P.O. No.:     |           |
|                                 | (K).        | N         | ,Re                                 |  |      | 4           |                                       |         |         | 11 11        | C2 C2 7% | Type  Matrix Prese                                                       |                                                             | ve            |                                                                      | oic Acid                                                                              | Vo.:          |           |
|                                 | ted & '     | 12/1/2/12 | Relinquished by:                    |  |      | 4           | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 1       | \       | <del>-</del> | アート      | # of V<br># of A<br># of C<br># of P                                     | OA '<br>mbei<br>lear (                                      | Via<br>r Gl   | ass                                                                  | Containers:                                                                           | RQN:          |           |
|                                 |             | les       | Received by:                        |  |      | X<br>X<br>X | XXX                                   | メメ      | イメメ     | 人 ズ          | ×<br>×   | 80:<br>TPH<br>F                                                          | 1.6<br>0.1<br>0.1                                           | ブ<br>ウ'<br>こ、 | RD                                                                   | Analyses:                                                                             | Sampler(s):   | Location. |
|                                 | he ucles    |           | d by:                               |  |      |             |                                       |         |         |              |          |                                                                          | . П                                                         |               |                                                                      | ses:                                                                                  | K-1WG         |           |
|                                 | 7/21/pst 84 |           | Date: Time:                         |  |      |             |                                       |         |         |              |          | as per MADEP CAM Section 2.0?  Yes No  Response required for CAM report) | ☐ Provide MCP CAM Report Were all field OC requirements met |               | State specific reporting standards If applicable, please list below. | QA Reporting Notes:<br>(check if needed)                                              |               | State:    |
| ļ                               |             |           | $oldsymbol{\perp} oldsymbol{/}$     |  |      |             |                                       |         |         |              |          | c ~                                                                      | <b>∸</b>                                                    |               |                                                                      |                                                                                       |               |           |

Report Date: 15-Aug-05 11:54





# HANIBAL TECHNOLOGY

Laboratory Report

Environmental Compliance Services 65 Millet Street; Suite 301

Richmond, VT 05477 Attn: Ronald Miller Project: Northern Petroleum-St Johnsbury, VT

Project #: 08-204262

|               | ····             |               |                 |                 |
|---------------|------------------|---------------|-----------------|-----------------|
| Laboratory ID | Client Sample ID | <u>Matrix</u> | Date Sampled    | Date Received   |
| SA31998-01    | Blank            | Ground Water  | 29-Jul-05 07:45 | 02-Aug-05 09:50 |
| SA31998-02    | MW-1             | Ground Water  | 29-Jul-05 13:55 | 02-Aug-05 09:50 |
| SA31998-03    | MW-2 ECS         | Ground Water  | 29-Jul-05 14:00 | 02-Aug-05 09:50 |
| SA31998-04    | MW-4             | Ground Water  | 29-Jul-05 00:00 | 02-Aug-05 09:50 |
| SA31998-05    | MW-5             | Ground Water  | 29-Jul-05 14:40 | 02-Aug-05 09:50 |
| SA31998-06    | MW-7             | Product       | 29-Jul-05 14:05 | 02-Aug-05 09:50 |
| SA31998-07    | MW-8             | Ground Water  | 29-Jul-05 14:30 | 02-Aug-05 09:50 |
| SA31998-08    | MW-11            | Ground Water  | 29-Jul-05 14:35 | 02-Aug-05 09:50 |
| SA31998-09    | MW-12            | Ground Water  | 29-Jul-05 14:30 | 02-Aug-05 09:50 |
| SA31998-10    | MW-13            | Ground Water  | 29-Jul-05 14:25 | 02-Aug-05 09:50 |
| SA31998-11    | MW-16            | Ground Water  | 29-Jul-05 13:20 | 02-Aug-05 09:50 |
| SA31998-12    | MW-17            | Product       | 29-Jul-05 11:45 | 02-Aug-05 09:50 |
| SA31998-13    | MW-18            | Ground Water  | 29-Jul-05 13:35 | 02-Aug-05 09:50 |
| SA31998-14    | MW-19            | Product       | 29-Jul-05 12:55 | 02-Aug-05 09:50 |
| SA31998-15    | MW-22            | Ground Water  | 29-Jul-05 13:45 | 02-Aug-05 09:50 |
| SA31998-16    | Duplicate        | Ground Water  | 29-Jul-05 13:20 | 02-Aug-05 09:50 |
| SA31998-17    | MW-2             | Ground Water  | 29-Jul-05 15:00 | 02-Aug-05 09:50 |
| SA31998-18    | MW-101           | Ground Water  | 29-Jul-05 14:50 | 02-Aug-05 09:50 |
| SA31998-19    | MW-1R            | Ground Water  | 29-Jul-05 14:40 | 02-Aug-05 09:50 |
|               | ,                |               |                 |                 |

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. All applicable NELAC requirements have been met. Please note that this report contains 26 pages of analytical data plus Chain of Custody documen(s).

This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc

Massachusetts Certification # M-MA138/MA Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538/2972 New York # 11393/11840 Rhode Island # 98 USDA # S-51435 Vermont # VT-11393



Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method indicated. Please refer to our "Quality" webpage at www.spectrum-analytical.com for a full listing of our current certifications.

### ENVIRONMENTAL ANALYSES

Matrix Ground Water Collection Date/Time 29-Jul-05 07:45 Received 02-Aug-05

| CAS No.         | Analyte(s)              | Result      | *RDL/Units     | Dilution  | Method Ref. | Prepared  | Analyzed  | Batch   | Analyst Fla |
|-----------------|-------------------------|-------------|----------------|-----------|-------------|-----------|-----------|---------|-------------|
| Volatile        | Organic Compounds       |             |                |           |             |           |           |         |             |
| <u>Volatile</u> | Organic Compounds by 82 | <u>260B</u> | Prepared by me | thod Vola | tiles       |           |           |         |             |
| 71-43-2         | Benzene                 | BRL         | 1.0 μg/l       | 1         | SW846 8260B | 08-Aug-05 | 09-Aug-05 | 5080574 | tim         |
| 100-41-4        | Ethylbenzene            | BRL         | 1.0 µg/l       | 1         | "           | "         | "         | "       | **          |
| 1634-04-4       | Methyl tert-butyl ether | BRL         | 1.0 μg/l       | 1         | n           | **        | **        | **      | . и         |
| 91-20-3         | Naphthalene             | BRL         | 1.0 μg/l       | 1         | "           | **        | **        | n       | "           |
| 108-88-3        | Toluene                 | BRL         | 1.0 μg/l       | 1         | "           | **        | "         | n       | "           |
| 95-63-6         | 1,2,4-Trimethylbenzene  | BRL         | 1.0 μg/l       | 1         | 11          | H         | **        | "       | u           |
| 108-67-8        | 1,3,5-Trimethylbenzene  | BRL         | 1.0 μg/l       | 1         | n           | "         | "         | n       | ***         |
| 1330-20-7       | m,p-Xylene              | BRL         | 2.0 μg/l       | 1         | n           | "         | "         | n       | n           |
| 95-47-6         | o-Xylene                | BRL         | 1.0 μg/l       | 1         | n           | 'n        | "         | 11      | II .        |
| Surrogate       | recoveries:             |             |                |           |             |           |           |         |             |
| 460-00-4        | 4-Bromofluorobenzene    | 93.4        | 70-130 %       |           |             | н         | "         | n       | 11          |
| 2037-26-5       | Toluene-d8              | 97.6        | 70-130 %       |           | "           | "         | n         | 11      | II          |
| 17060-07-0      | 1,2-Dichloroethane-d4   | 106         | 70-130 %       |           | n           | 11        | **        | "       | 11          |
| 1868-53-7       | Dibromofluoromethane    | 91.6        | 70-130 %       |           | "           | 11        | 11        | **      | 11          |

Matrix Ground Water Collection Date/Time 29-Jul-05 13:55

| CAS No.         | Analyte(s)                  | Result        | *RDL/Units      | Dilution  | Method Ref.  | Prepared  | Analyzed  | Batch   | Analyst | Flag |
|-----------------|-----------------------------|---------------|-----------------|-----------|--------------|-----------|-----------|---------|---------|------|
| Volatile        | Organic Compounds           |               |                 |           |              |           |           |         |         |      |
| <u>Volatile</u> | Organic Compounds by 8260   | <u>B</u>      | Prepared by me  | thod Vola | tiles        |           |           |         |         |      |
| 71-43-2         | Benzene                     | 1,060         | 50.0 μg/l       | 50        | SW846 8260B  | 08-Aug-05 | 09-Aug-05 | 5080574 | tim     |      |
| 100-41-4        | Ethylbenzene                | 1,560         | 50.0 μg/l       | - 50      | "            | **        | н         | n       | **      |      |
| 1634-04-4       | Methyl tert-butyl ether     | 6,980         | 50.0 μg/l       | 50        | n            | 11        | n         | 11      | **      |      |
| 91-20-3         | Naphthalene                 | 632           | 50.0 μg/l       | 50        |              | **        | **        | Ħ       | "       |      |
| 108-88-3        | Toluene                     | 433           | 50.0 μg/l       | 50        | n            | н ,       | "         | Ħ       | "       |      |
| 95-63-6         | 1,2,4-Trimethylbenzene      | 1,830         | 50.0 μg/l       | 50        | tt           | **        | **        | ıı      | **      |      |
| 108-67-8        | 1,3,5-Trimethylbenzene      | 507           | 50.0 μg/l       | 50        | ti.          | **        | **        | H       | **      |      |
| 1330-20-7       | m,p-Xylene                  | 6,120         | 100 μg/l        | 50        | 11           | **        | "         | 11      | "       |      |
| 95-47-6         | o-Xylene                    | 800           | 50.0 μg/l       | 50        | **           | "         | "         | n       | "       |      |
| Surrogate       | recoveries:                 |               |                 |           |              |           |           |         | •       |      |
| 460-00-4        | 4-Bromofluorobenzene        | 95.0          | 70-130 %        |           | **           | Ħ         | U         | **      | "       |      |
| 2037-26-5       | Toluene-d8                  | 97.4          | 70-130 %        |           | 11           | 11        | U         | n       | **      |      |
| 17060-07-0      | 1,2-Dichloroethane-d4       | 107           | 70-130 %        |           | 11           | 11        | н         | n       | **      |      |
| 1868-53-7       | Dibromofluoromethane        | 93.8          | 70-130 %        |           | 11           | 11        | "         | ri      | 11      |      |
| Extracta        | able Petroleum Hydrocarbo   | ns            |                 |           |              |           |           |         |         |      |
| Diesel R        | ange Organics               |               | Prepared by me  | thod SW8  | 46 3535      |           |           |         |         |      |
| 68476-30-2      | Fuel Oil #2                 | Calculated as | 0.2 mg/l        | 1         | 8015BM/ME4.1 | 08-Aug-05 | 09-Aug-05 | 5080507 | KG      |      |
| 68476-31-3      | Fuel Oil #4                 | BRL           | 0.2 mg/l        | 1         | II.          | "         | 11        | 11      | 11      |      |
| 68553-00-4      | Fuel Oil #6                 | BRL           | 0.2 mg/l        | 1         | Ħ            | "         | 17        | n       | Ħ       |      |
| M09800000       | Motor Oil                   | BRL           | 0.2 mg/l        | 1         | ti           | U         | U         |         | "       |      |
| J00100000       | Aviation Fuel               | BRL           | 0.2 mg/l        | 1         | **           | "         | **        | H       | 11      |      |
|                 | Unidentified                | 6.8           | 0.2 mg/l        | 1         | 11           | "         | *1        | 11      | 11      |      |
|                 | Other Oil                   | Calculated as | 0.2 mg/l        | 1         | 11           | 11        | 11        | "       | n       |      |
|                 | Diesel Range Organics (DRO) | 6.8           | 0.2 mg/l        | 1         | n            | 11        | 11        | **      | "       |      |
| Surrogate       | e recoveries:               |               | - United States |           |              | ,         |           |         |         |      |
| 3386-33-2       | 1-Chlorooctadecane          | 135           | 40-140 %        |           | "            | 11        | U         | u       | 11      |      |

Matrix Ground Water Collection Date/Time 29-Jul-05 14:00

| CAS No.    | Analyte(s)                  | Result        | *RDL/Units     | Dilution  | Method Ref.         | Prepared  | Analyzed  | Batch   | Analyst | Flag |
|------------|-----------------------------|---------------|----------------|-----------|---------------------|-----------|-----------|---------|---------|------|
| Volatile   | Organic Compounds           |               |                |           |                     |           |           |         |         |      |
| Volatile - | Organic Compounds by 8260   | <u>B</u>      | Prepared by me | thod Vola | tiles               |           |           |         |         |      |
| 71-43-2    | Benzene                     | 827           | 50.0 μg/l      | 50        | SW846 8260B         | 08-Aug-05 | 09-Aug-05 | 5080574 | tim     |      |
| 100-41-4   | Ethylbenzene                | 398           | 50.0 μg/l      | 50        | n                   | "         | "         | n       | 11      |      |
| 1634-04-4  | Methyl tert-butyl ether     | 2,110         | 50.0 μg/l      | 50        | 11                  | "         | n         | 11      | **      |      |
| 91-20-3    | Naphthalene                 | 304           | 50.0 μg/l      | 50        | "                   | "         | n         | 11      | **      |      |
| 108-88-3   | Toluene                     | 93.0          | 50.0 μg/l      | 50        | U                   | 17        | n         | 11      | 17      |      |
| 95-63-6    | 1,2,4-Trimethylbenzene      | 416           | 50.0 μg/l      | 50        | II                  | **        | "         | u       | "       |      |
| 108-67-8   | 1,3,5-Trimethylbenzene      | 136           | 50.0 μg/l      | 50        | n                   | 11        | n         | "       | n       |      |
| 1330-20-7  | m,p-Xylene                  | 1,420         | 100 μg/l       | 50        | n                   | "         | "         | n       | n       |      |
| 95-47-6    | o-Xylene                    | BRL           | 50.0 μg/l      | 50        | tt                  | **        | H         | 11      | 11      |      |
| Surrogate  | recoveries:                 |               |                |           |                     |           |           |         |         |      |
| 160-00-4   | 4-Bromofluorobenzene        | 97.6          | 70-130 %       |           | II.                 | "         | H         | "       | 11      |      |
| 2037-26-5  | Toluene-d8                  | 100           | 70-130 %       |           | II .                | n         | 11        | "       | H       |      |
| 17060-07-0 | 1,2-Dichloroethane-d4       | 125           | 70-130 %       |           | ii.                 | 11        | 11        | "       | 11      |      |
| 1868-53-7  | Dibromofluoromethane        | 102           | 70-130 %       |           | H                   | "         | **        | ,,      | If      |      |
| Extracta   | able Petroleum Hydrocarbo   | ns            |                |           |                     |           |           |         |         |      |
| Diesel R   | ange Organics               |               | Prepared by me | thod SW8  | 46 3535             |           |           |         |         |      |
| 68476-30-2 | Fuel Oil #2                 | Calculated as | 0.2 mg/l       | 1         | 8015BM/ME4.1<br>.25 | 08-Aug-05 | 09-Aug-05 | 5080507 | KG      |      |
| 58476-31-3 | Fuel Oil #4                 | BRL           | 0.2 mg/l       | 1         | n                   | "         | 19        | "       | 19      |      |
| 58553-00-4 | Fuel Oil #6                 | BRL           | 0.2 mg/l       | 1         | 11                  | **        | P         | 11      | 17      |      |
| M09800000  | Motor Oil                   | BRL           | 0.2 mg/l       | 1         | II                  | **        | "         | n       | Ħ       |      |
| 100100000  | Aviation Fuel               | BRL           | 0.2 mg/l       | 1         | н                   | "         | 11        | 11      | 11      |      |
|            | Unidentified                | 13.2          | 0.2 mg/l       | 1         | , 4                 | **        | 11        | 11      | n       |      |
|            | Other Oil                   | Calculated as | 0.2 mg/l       | 1         | "                   | "         | n         | "       | "       |      |
|            | Diesel Range Organics (DRO) | 13.2          | 0.2 mg/l       | 1         | ŧi                  | "         | H         | *1      | 11      |      |
| Surrogate  | recoveries:                 |               |                |           |                     |           |           |         |         |      |
| 3386-33-2  | 1-Chlorooctadecane          | 123           | 40-140 %       |           | ti                  | **        |           | **      | n       |      |

Matrix Ground Water Collection Date/Time 29-Jul-05 00:00

| CAS No.         | Analyte(s)                  | Result        | *RDL/Units      | Dilution  | Method Ref.         | Prepared  | Analyzed  | Batch   | Analyst | Flag |
|-----------------|-----------------------------|---------------|-----------------|-----------|---------------------|-----------|-----------|---------|---------|------|
| Volatile        | Organic Compounds           |               |                 |           |                     |           |           |         |         |      |
| <i>Volatile</i> | Organic Compounds by 8260.  | <u>B</u>      | Prepared by met | hod Volat | tiles               |           |           |         |         |      |
| 71-43-2         | Benzene                     | 4.9           | 1.0 µg/l        | 1         | SW846 8260B         | 10-Aug-05 | 10-Aug-05 | 5080723 | RLJ     |      |
| 100-41-4        | Ethylbenzene                | 2.0           | 1.0 μg/l        | 1         | n                   | **        | 11        | Ħ       | U       |      |
| 1634-04-4       | Methyl tert-butyl ether     | 38.8          | 1.0 µg/l        | 1         | n                   | n         | 11        | n.      | 11      |      |
| 91-20-3         | Naphthalene                 | 1.3           | 1.0 µg/l        | 1         | 11                  | "         | 11        | n       | **      |      |
| 108-88-3        | Toluene                     | 4.6           | 1.0 µg/l        | 1         | 11                  | "         | 11        | **      | **      |      |
| 95-63-6         | 1,2,4-Trimethylbenzene      | 7.5           | 1.0 µg/l        | 1         | 11                  | n .       | **        | "       | 11      |      |
| 108-67-8        | 1,3,5-Trimethylbenzene      | 2.5           | 1.0 µg/l        | 1         | 11                  | "         | H         | **      | **      |      |
| 1330-20-7       | m,p-Xylene                  | 11.4          | 2.0 μg/l        | 1         | 11                  | "         | "         | Ħ       | 11      |      |
| 95-47-6         | o-Xylene                    | 2.7           | 1.0 μg/l        | 1         | H                   |           | n         | 11      | 11      |      |
| <br>Surrogate   | recoveries:                 |               |                 |           |                     |           |           |         |         |      |
| 460-00-4        | 4-Bromofluorobenzene        | 104           | 70-130 %        |           | H                   | II .      | 11        | "       | "       |      |
| 2037-26-5       | Toluene-d8                  | 98.4          | 70-130 %        |           | If                  | "         | Ħ         | "       | 11      |      |
| 17060-07-0      | 1,2-Dichloroethane-d4       | 92.2          | 70-130 %        |           | 11                  | H         | 11        | u       | "       |      |
| 1868-53-7       | Dibromofluoromethane        | 99.0          | 70-130 %        |           | Ħ                   | n         | 11        | **      | **      |      |
| Extracta        | able Petroleum Hydrocarbo   | ns            |                 |           |                     |           |           |         |         |      |
| Diesel R        | ange Organics               |               | Prepared by met | hod SW8   | 46 3535             |           |           |         |         |      |
| 68476-30-2      | Fuel Oil #2                 | BRL           | 0.2 mg/l        | 1         | 8015BM/ME4.1<br>.25 | 08-Aug-05 | 09-Aug-05 | 5080507 | KG      |      |
| 68476-31-3      | Fuel Oil #4                 | BRL           | 0.2 mg/l        | 1         |                     | 11        | U         | "       | 11      |      |
| 68553-00-4      | Fuel Oil #6                 | BRL           | 0.2 mg/l        | 1         | 17                  | 11        | H         | ,H      | 11      |      |
| M09800000       | Motor Oil                   | BRL           | 0.2 mg/l        | 1         | "                   | II        | "         | 11      | 17      |      |
| 100100000       | Aviation Fuel               | BRL           | 0.2 mg/l        | 1         | "                   | 11        | **        | 11      | U       |      |
|                 | Unidentified                | 0.5           | 0.2 mg/l        | 1         | 11                  | 11        | n         | "       | n       |      |
|                 | Other Oil                   | Calculated as | 0.2 mg/l        | 1         | H                   | 11        | 11        | 17      | Ħ       |      |
|                 | Diesel Range Organics (DRO) | 0.5           | 0.2 mg/l        | 1         | "                   | 11        | . н       | "       | . 11    |      |
| Surrogate       | recoveries:                 |               |                 |           |                     |           |           |         |         |      |
| 3386-33-2       | 1-Chlorooctadecane          | 83.8          | 40-140 %        |           | ıı                  | n         | ***       | n       | **      |      |

Matrix Ground Water Collection Date/Time 29-Jul-05 14:40

| CAS No.         | Analyte(s)                  | Result        | *RDL/Units     | Dilution  | Method Ref.  | Prepared  | Analyzed  | Batch   | Analyst | Flag |
|-----------------|-----------------------------|---------------|----------------|-----------|--------------|-----------|-----------|---------|---------|------|
| Volatile        | Organic Compounds           |               |                |           |              |           |           |         |         |      |
| <u>Volatile</u> | Organic Compounds by 8260   | <u>B</u>      | Prepared by me | thod Vola | tiles        |           |           |         |         |      |
| 71-43-2         | Benzene                     | 157           | 5.0 μg/l       | 5         | SW846 8260B  | 10-Aug-05 | 10-Aug-05 | 5080723 | RLJ     |      |
| 100-41-4        | Ethylbenzene                | 21.6          | 5.0 μg/l       | 5         | 17           | n         | "         | II.     | **      |      |
| 1634-04-4       | Methyl tert-butyl ether     | 337           | 5.0 μg/l       | 5         | 11           | n         | n         | "       | "       |      |
| 91-20-3         | Naphthalene                 | 93.7          | 5.0 μg/l       | 5         | 19           | n         | "         | n       | "       |      |
| 108-88-3        | Toluene                     | BRL           | 5.0 μg/l       | 5         | 11           | Ħ         | "         | "       | "       |      |
| 95-63-6         | 1,2,4-Trimethylbenzene      | 159           | 5.0 μg/l       | 5         | n            | Ħ         | "         | "       | "       |      |
| 108-67-8        | 1,3,5-Trimethylbenzene      | 55.6          | 5.0 μg/l       | 5         | n            | n         | "         | "       | "       |      |
| 1330-20-7       | m,p-Xylene                  | 145           | 10.0 µg/l      | 5         | 11           | Ħ         | 11        | **      | "       |      |
| 95-47-6         | o-Xylene                    | BRL           | 5.0 μg/l       | 5         | 10           | n         | 11        | n       | "       |      |
| Surrogate       | e recoveries:               |               |                |           |              |           |           |         |         |      |
| 460-00-4        | 4-Bromofluorobenzene        | 105           | 70-130 %       |           | "            | ŧı        | "         | u       | "       |      |
| 2037-26-5       | Toluene-d8                  | 97.8          | 70-130 %       |           | 11           | n         | "         | 11      | "       |      |
| 17060-07-0      | 1,2-Dichloroethane-d4       | 102           | 70-130 %       |           | 11           | 11        | n .       | **      | "       |      |
| 1868-53-7       | Dibromofluoromethane        | 101           | 70-130 %       |           | n            | 11        | 11        | "       | "       |      |
| Extracta        | able Petroleum Hydrocarbo   | ns            |                |           |              |           |           |         |         |      |
| Diesel R        | ange Organics               |               | Prepared by me | thod SW8  | 346 3535     |           |           |         |         |      |
| 68476-30-2      | Fuel Oil #2                 | Calculated as | 0.3 mg/l       | 1         | 8015BM/ME4.1 | 08-Aug-05 | 09-Aug-05 | 5080507 | KG      |      |
| 68476-31-3      | Fuel Oil #4                 | BRL           | 0.3 mg/l       | 1         | *            | "         | "         | Ħ       | и       |      |
| 68553-00-4      | Fuel Oil #6                 | BRL           | 0.3 mg/l       | 1         | "            | u         | H         | **      | "       |      |
| M09800000       | Motor Oil                   | BRL           | 0.3 mg/l       | 1         | 11           | U         | "         | **      | "       |      |
| J00100000       | Aviation Fuel               | BRL           | 0.3 mg/l       | 1         | 11           | Ħ         | 11        | 18      | "       |      |
|                 | Unidentified                | 5.3           | 0.3 mg/l       | . 1       | 11           | Ħ         | n         | 11      | 11      |      |
|                 | Other Oil                   | Calculated as | 0.3 mg/l       | 1         | **           | 11        | n         | II*     | n       |      |
|                 | Diesel Range Organics (DRO) | 5.3           | 0.3 mg/l       | 1         |              | 11        | n         | 11      | 11      | ,    |
| Surrogate       | e recoveries:               |               |                |           |              |           |           |         |         |      |
| 3386-33-2       | 1-Chlorooctadecane          | 128           | 40-140 %       |           | "            | 11        | **        | 11      | n       |      |

Sample Identification MW-7 SA31998-06

Client Project # 08-204262

Matrix Product Collection Date/Time 29-Jul-05 14:05

| CAS No.        | Analyte(s)                   | Result  | *RDL/Units     | Dilution  | Method Ref.        | Prepared  | Analyzed  | Batch   | Analyst | Flag |
|----------------|------------------------------|---------|----------------|-----------|--------------------|-----------|-----------|---------|---------|------|
| Extracta       | able Petroleum Hydrocarboi   | ns      |                |           | -                  |           |           |         |         |      |
| <u>TPH 810</u> | 00 by GC                     |         | Prepared by me | thod SW84 | 46 3550B           |           |           |         |         |      |
| 8006-61-9      | Gasoline                     | BRL     | 3920 mg/kg     | 1         | +SW846<br>8100Mod. | 10-Aug-05 | 11-Aug-05 | 5080701 | KG      |      |
| 68476-30-2     | Fuel Oil #2                  | 201,000 | 3920 mg/kg     | 1         | n                  | "         | 11        | *1      | 19      |      |
| 68476-31-3     | Fuel Oil #4                  | BRL     | 3920 mg/kg     | 1         | ~ n                | "         | "         | U       | "       |      |
| 68553-00-4     | Fuel Oil #6                  | BRL     | 3920 mg/kg     | 1         | tt                 | U         | 11        | "       | 11      |      |
| M09800000      | Motor Oil                    | BRL     | 3920 mg/kg     | 1         | 11                 | n         | 11        | "       | 11      |      |
| 8032-32-4      | Ligroin                      | BRL     | 3920 mg/kg     | 1         | **                 | n         | 11        | "       | 11      |      |
| J00100000      | Aviation Fuel                | BRL     | 3920 mg/kg     | 1         | **                 | "         | · ·       | 11      | **      |      |
|                | Unidentified                 | BRL     | 3920 mg/kg     | 1         | 11                 | "         | ıı        | 11      | **      |      |
|                | Other Oil                    | BRL     | 3920 mg/kg     | 1         | 0                  | "         | n         | 11      | n       |      |
|                | Total Petroleum Hydrocarbons | 201,000 | 3920 mg/kg     | 1         | "                  | **        | "         | "       | u       |      |
| Surrogate      | e recoveries:                |         |                |           |                    |           |           |         |         |      |
| 3386-33-2      | 1-Chlorooctadecane           | 672     | 40-140 %       |           | **                 | "         | 11        | **      | 11      | S-02 |

Matrix Ground Water Collection Date/Time 29-Jul-05 14:30

| CAS No.         | Analyte(s)                  | Result        | *RDL/Units     | Dilution  | Method Ref.  | Prepared  | Analyzed  | Batch   | Analyst | Flag |
|-----------------|-----------------------------|---------------|----------------|-----------|--------------|-----------|-----------|---------|---------|------|
| Volatile        | Organic Compounds           |               |                |           |              |           |           |         |         |      |
| <i>Volatile</i> | Organic Compounds by 8260   | <u>B</u>      | Prepared by me | thod Vola | tiles        |           |           |         |         |      |
| 71-43-2         | Benzene                     | 17.7          | 1.0 μg/l       | 1         | SW846 8260B  | 10-Aug-05 | 10-Aug-05 | 5080723 | RLJ     |      |
| 100-41-4        | Ethylbenzene                | BRL           | 1.0 μg/l       | 1         | 11           | ti.       | н         | "       | Ħ       |      |
| 1634-04-4       | Methyl tert-butyl ether     | 61.6          | 1.0 μg/l       | 1         | 11           | 11        | n.        | *11     | 11      |      |
| 91-20-3         | Naphthalene                 | BRL           | 1.0 μg/l       | 1         | "            | . "       | "         | 11      | "       |      |
| 108-88-3        | Toluene                     | BRL           | 1.0 μg/l       | 1         | 11           | R         | "         | "       | "       |      |
| 95-63-6         | 1,2,4-Trimethylbenzene      | BRL           | 1.0 µg/l       | 1         | 11           | 11        | "         | "       | "       |      |
| 108-67-8        | 1,3,5-Trimethylbenzene      | BRL           | 1.0 μg/l       | 1         | **           | 11        | 11        | 11      | "       |      |
| 1330-20-7       | m,p-Xylene                  | BRL           | 2.0 μg/l       | 1         | 11           | и         | "         | 11      | H       |      |
| 95-47-6         | o-Xylene                    | BRL           | 1.0 μg/l       | 1         | 11           | "         | н         | n       | . "     |      |
| <br>Surrogate   | recoveries:                 |               |                | ,,        |              |           |           |         |         |      |
| 460-00-4        | 4-Bromofluorobenzene        | 105           | 70-130 %       |           | н            | 11        | 11        | "       | n       |      |
| 2037-26-5       | Toluene-d8                  | 97.6          | 70-130 %       |           | n            | н         | 19        | "       | n       |      |
| 17060-07-0      | 1,2-Dichloroethane-d4       | 103           | 70-130 %       |           | **           | "         | "         | н       | 11      |      |
| 1868-53-7       | Dibromofluoromethane        | 101           | 70-130 %       |           | "            | "         | 11        | н .     | n       |      |
| Extracta        | able Petroleum Hydrocarbo   | ns            |                |           |              |           |           |         |         |      |
| Diesel R        | ange Organics               |               | Prepared by me | thod SW8  | 46 3535      |           |           |         |         |      |
| 68476-30-2      | Fuel Oil #2                 | Calculated as | 0.2 mg/l       | 1         | 8015BM/ME4.1 | 08-Aug-05 | 09-Aug-05 | 5080507 | KG      |      |
| 68476-31-3      | Fuel Oil #4                 | BRL           | 0.2 mg/l       | 1         | "            | **        | 19        | n       | 11      |      |
| 68553-00-4      | Fuel Oil #6                 | BRL           | 0.2 mg/l       | 1         | "            | ti        | 11        | 11      | 11      |      |
| M09800000       | Motor Oil                   | BRL           | 0.2 mg/l       | 1         | "            | **        | "         | 11      | 11      |      |
| J00100000       | Aviation Fuel               | BRL           | 0.2 mg/l       | 1         | "            | 11        | **        | 11      | 11      |      |
|                 | Unidentified                | 5.4           | 0.2 mg/l       | 1         | 11           | **        | 11        | H       | u       |      |
|                 | Other Oil                   | BRL           | 0.2 mg/l       | 1         | "            | n         | 11        | 17      | u       |      |
|                 | Diesel Range Organics (DRO) | 5.4           | 0.2 mg/l       | 1         | 11           | 19        | "         | "       | *1      |      |
| Surrogate       | e recoveries:               |               |                |           |              |           |           |         |         |      |
| 3386-33-2       | 1-Chlorooctadecane          | 142           | 40-140 %       |           | ti           | u         | "         | **      | 19      | S-02 |

Matrix Ground Water Collection Date/Time 29-Jul-05 14:35

| CAS No.       | Analyte(s)                  | Result   | *RDL/Units      | Dilution | Method Ref.         | Prepared  | Analyzed  | Batch   | Analyst         | Flag |
|---------------|-----------------------------|----------|-----------------|----------|---------------------|-----------|-----------|---------|-----------------|------|
| Volatile      | Organic Compounds           |          |                 |          |                     |           |           |         |                 |      |
| Volatile (    | Organic Compounds by 8260.  | <u>B</u> | Prepared by met | hod Vola | tiles               |           |           |         |                 |      |
| 71-43-2       | Benzene                     | 18.2     | 1.0 µg/l        | 1        | SW846 8260B         | 10-Aug-05 | 10-Aug-05 | 5080723 | RLJ             |      |
| 100-41-4      | Ethylbenzene                | 1.3      | 1.0 μg/l        | l        | "                   | n         | 11        | Ħ       | 11              |      |
| 1634-04-4     | Methyl tert-butyl ether     | 4.9      | 1.0 µg/l        | 1        | 11                  | "         | 11        | **      | "               |      |
| 91-20-3       | Naphthalene                 | BRL      | 1.0 μg/l        | 1        | 11                  | "         | **        | "       | "               |      |
| 108-88-3      | Toluene                     | BRL      | 1.0 μg/l        | 1        | 11                  | n         | "         | **      | 11              |      |
| 95-63-6       | 1,2,4-Trimethylbenzene      | 50.6     | 1.0 μg/l        | 1        | 11                  | "         | H         | "       | "               |      |
| 108-67-8      | 1,3,5-Trimethylbenzene      | 3.4      | 1.0 µg/l        | 1        | ıı                  | "         | 11        | #       | н               |      |
| 1330-20-7     | m,p-Xylene                  | 2.1      | 2.0 μg/l        | 1        | H                   | " "       | 11        | "       | "               |      |
| 95-47-6       | o-Xylene                    | BRL      | 1.0 µg/l        | 1        | 11                  | "         | 11        | "       | "               |      |
| <br>Surrogate | recoveries:                 |          |                 |          |                     | ,         |           | ,       |                 |      |
| 460-00-4      | 4-Bromofluorobenzene        | 108      | 70-130 %        |          | H                   | 11        | n         | n       | 11              |      |
| 2037-26-5     | Toluene-d8                  | 98.0     | 70-130 %        |          | H                   | 11        | Ħ         | "       | n               |      |
| 17060-07-0    | 1,2-Dichloroethane-d4       | 102      | 70-130 %        |          | 11                  | "         | **        | 11      | **              |      |
| 1868-53-7     | Dibromofluoromethane        | 99.6     | 70-130 %        |          | 11                  | "         | TI TI     | "       | "               |      |
| Extracta      | ible Petroleum Hydrocarboi  | ns       |                 |          |                     |           |           |         |                 |      |
| Diesel R      | ange Organics               |          | Prepared by met | hod SW8  | 46 3535             |           |           |         |                 |      |
| 68476-30-2    | Fuel Oil #2                 | 6.7      | 0.2 mg/l        | 1        | 8015BM/ME4.1<br>.25 | 08-Aug-05 | 09-Aug-05 | 5080507 | KG              |      |
| 68476-31-3    | Fuel Oil #4                 | BRL      | 0.2 mg/l        | 1        | n                   | "         | H         | 11      | **              |      |
| 68553-00-4    | Fuel Oil #6                 | BRL      | 0.2 mg/l        | 1        |                     | 11        | **        | н       | 11              |      |
| M09800000     | Motor Oil                   | BRL      | 0.2 mg/l        | 1        | n                   | 11        | If        | n       | 11              |      |
| J00100000     | Aviation Fuel               | BRL      | 0.2 mg/l        | 1        | R                   | 11        | "         | **      | 11              |      |
|               | Unidentified                | BRL      | 0.2 mg/l        | 1        | "                   | "         | "         | n       | 11              |      |
|               | Other Oil                   | BRL      | 0.2 mg/l        | 1        | II .                | H.        | 11        | 11      | н               |      |
|               | Diesel Range Organics (DRO) | 6.7      | 0.2 mg/l        | 1        | n                   | "         | "         | u       | 11              |      |
| Surrogate     | recoveries:                 |          |                 |          |                     |           |           |         | ···             |      |
| 3386-33-2     | 1-Chlorooctadecane          | 120      | 40-140 %        |          | n                   | n         | "         | 11      | ti <sup>c</sup> |      |

Matrix Ground Water Collection Date/Time 29-Jul-05 14:30

| CAS No.         | Analyte(s)                  | Result        | *RDL/Units                             | Dilution | Method Ref.         | Prepared  | Analyzed  | Batch   | Analyst | Flag |
|-----------------|-----------------------------|---------------|----------------------------------------|----------|---------------------|-----------|-----------|---------|---------|------|
| Volatile        | Organic Compounds           |               |                                        |          |                     |           |           |         |         |      |
| <u>Volatile</u> | Organic Compounds by 8260   | <u>B</u>      | Prepared by met                        | hod Vola | tiles               |           |           |         |         |      |
| 71-43-2         | Benzene                     | BRL           | 10.0 μg/l                              | 10       | SW846 8260B         | 10-Aug-05 | 10-Aug-05 | 5080723 | RLJ     |      |
| 100-41-4        | Ethylbenzene                | 162           | 10.0 μg/l                              | 10       | 11                  | **        | 11        | "       | 11      |      |
| 1634-04-4       | Methyl tert-butyl ether     | BRL           | 10.0 μg/l                              | 10       | Ħ                   | **        | 11        | n       | 11      |      |
| 91-20-3         | Naphthalene                 | 438           | 10.0 μg/l                              | 10       | n                   | "         | "         | n       | II.     |      |
| 108-88-3        | Toluene                     | BRL           | 10.0 μg/l                              | 10       | n                   | n         | n         | n       | n       |      |
| 95-63-6         | 1,2,4-Trimethylbenzene      | 760           | 10.0 μg/l                              | 10       | **                  | **        | "         | "       | "       |      |
| 108-67-8        | 1,3,5-Trimethylbenzene      | 252           | 10.0 μg/l                              | 10       | 11                  | **        | n         | "       | "       |      |
| 1330-20-7       | m,p-Xylene                  | 745           | 20.0 μg/l                              | 10       | "                   | H         | R         | "       |         |      |
| 95-47-6         | o-Xylene                    | 13.7          | 10.0 μg/l                              | 10       | 11                  | "         | "         | n       | 11      |      |
| Surrogate       | recoveries:                 |               |                                        |          |                     |           |           |         |         |      |
| 460-00-4        | 4-Bromofluorobenzene        | 104           | 70-130 %                               |          | II                  | 11        | **        | н       | 11      |      |
| 2037-26-5       | Toluene-d8                  | 98.8          | 70-130 %                               |          | ii.                 | 11        | н         | "       | **      |      |
| 17060-07-0      | 1,2-Dichloroethane-d4       | 102           | 70-130 %                               |          | 11                  | n         | n         | n       | 11      |      |
| 1868-53-7       | Dibromofluoromethane        | 100           | 70-130 %                               |          | "                   | "         | **        | n       | н       |      |
| Extracta        | able Petroleum Hydrocarbo   | ns            |                                        |          |                     |           |           |         |         |      |
| Diesel R        | ange Org <u>anics</u>       |               | Prepared by met                        | hod SW8  | 46 3535             |           |           |         |         |      |
| 68476-30-2      | Fuel Oil #2                 | Calculated as | 0.2 mg/l                               | 1        | 8015BM/ME4.1<br>.25 | 08-Aug-05 | 09-Aug-05 | 5080507 | KG      |      |
| 68476-31-3      | Fuel Oil #4                 | BRL           | 0.2 mg/l                               | 1        | "                   | H         | 11        | "       | n       |      |
| 68553-00-4      | Fuel Oil #6                 | BRL           | 0.2 mg/l                               | 1        | Ħ                   | **        | 11        | "       | 11      |      |
| M09800000       | Motor Oil                   | BRL           | 0.2 mg/l                               | 1        | ti                  | **        | **        | "       | 17      |      |
| J00100000       | Aviation Fuel               | BRL           | 0.2 mg/l                               | 1        | n                   | **        | **        | 11      | "       |      |
|                 | Unidentified                | 5.8           | 0.2 mg/l                               | 1        | n                   | n         | 11        | "       | 11      |      |
|                 | Other Oil                   | Calculated as | 0.2 mg/l                               | 1        | *1                  | n         | Ħ         | n       | 0       |      |
|                 | Diesel Range Organics (DRO) | 5.8           | 0.2 mg/l                               | 1        | Ħ                   | n         | n         | u       | n       |      |
| Surrogate       | recoveries:                 |               | ************************************** |          |                     |           |           |         |         |      |
| 3386-33-2       | 1-Chlorooctadecane          | 102           | 40-140 %                               |          | 11                  | U         | "         | "       | n       |      |
|                 |                             |               |                                        |          |                     |           |           |         |         |      |

Matrix Ground Water Collection Date/Time 29-Jul-05 14:25

| CAS No.         | Analyte(s)                  | Result        | *RDL/Units     | Dilution  | Method Ref.  | Prepared  | Analyzed  | Batch   | Analyst | Flag |
|-----------------|-----------------------------|---------------|----------------|-----------|--------------|-----------|-----------|---------|---------|------|
| Volatile        | Organic Compounds           |               |                |           |              |           |           |         |         |      |
| <u>Volatile</u> | Organic Compounds by 8260   | <u>B</u>      | Prepared by me | thod Vola | tiles        |           |           |         |         |      |
| 71-43-2         | Benzene                     | 60.2          | 5.0 μg/l       | 5         | SW846 8260B  | 08-Aug-05 | 09-Aug-05 | 5080574 | tim     |      |
| 100-41-4        | Ethylbenzene                | 29.0          | 5.0 μg/l       | 5         | н            | **        | "         | **      | 11      |      |
| 1634-04-4       | Methyl tert-butyl ether     | 154           | 5.0 μg/l       | 5         | 11           | 11        | 11        | 11      | 11      |      |
| 91-20-3         | Naphthalene                 | 103           | 5.0 μg/l       | 5         | 11           | **        | "         | 11      | 11      |      |
| 108-88-3        | Toluene                     | BRL           | 5.0 μg/l       | 5         | 11           | 11        | **        | 11      | 17      |      |
| 95-63-6         | 1,2,4-Trimethylbenzene      | 313           | 5.0 μg/l       | 5         | 11           | **        | **        | **      | "       |      |
| 108-67-8        | 1,3,5-Trimethylbenzene      | 135           | 5.0 μg/l       | 5         | 11           | 11        | . "       | "       | 0       |      |
| 1330-20-7       | m,p-Xylene                  | 191           | 10.0 µg/l      | 5         | 19           | 11        | **        | H       |         |      |
| 95-47-6         | o-Xylene                    | 7.1           | 5.0 μg/l       | 5         | 11           | **        | "         | 11      | 11      |      |
| Surrogate       | e recoveries:               |               |                |           |              |           |           |         |         |      |
| 460-00-4        | 4-Bromofluorobenzene        | 99.0          | 70-130 %       |           | 11           | 11        | "         | n       | 19      |      |
| 2037-26-5       | Toluene-d8                  | 100           | 70-130 %       |           | н            | 11        | "         | **      | 17      |      |
| 17060-07-0      | 1,2-Dichloroethane-d4       | 121           | 70-130 %       |           | н            | 11        | 11        | "       | n       |      |
| 1868-53-7       | Dibromofluoromethane        | 98.8          | 70-130 %       |           | Ħ            | 11        | II .      | "       | "       |      |
| Extracta        | able Petroleum Hydrocarbo   | ns            |                |           |              |           |           |         |         |      |
| Diesel R        | ange Organics               |               | Prepared by me | thod SW8  | 46 3535      |           |           |         |         |      |
| 68476-30-2      | Fuel Oil #2                 | Calculated as | 0.2 mg/l       | 1         | 8015BM/ME4.1 | 08-Aug-05 | 09-Aug-05 | 5080507 | KG      |      |
| 68476-31-3      | Fuel Oil #4                 | BRL           | 0.2 mg/l       | 1         | ti           | "         | **        | 11      | "       |      |
| 68553-00-4      | Fuel Oil #6                 | BRL           | 0.2 mg/l       | 1         | 11           | "         | "         | "       | U       |      |
| M09800000       | Motor Oil                   | BRL           | 0.2 mg/l       | 1         | 11           | D         | "         | "       | н       |      |
| J00100000       | Aviation Fuel               | BRL           | 0.2 mg/l       | 1         | n            | 19        | "         |         | **      |      |
|                 | Unidentified                | 3.4           | 0.2 mg/l       | 1         | 11           | 11        | Ħ         | 11      | н       |      |
|                 | Other Oil                   | Calculated as | 0.2 mg/l       | 1         | n            | **        | 11        | 0       | "       |      |
|                 | Diesel Range Organics (DRO) | 3.4           | 0.2 mg/l       | . 1       | 11           | "         | U         | tt      | "       |      |
| Surrogate       | e recoveries:               |               |                |           |              |           |           |         |         |      |
| 3386-33-2       | 1-Chlorooctadecane          | 72.5          | 40-140 %       |           | Ħ            | *1        | 11        | 11      | 11      |      |

Matrix Ground Water Collection Date/Time 29-Jul-05 13:20

| CAS No.          | Analyte(s)                  | Result        | *RDL/Units     | Dilution  | Method Ref.         | Prepared  | Analyzed  | Batch   | Analyst | Flag |
|------------------|-----------------------------|---------------|----------------|-----------|---------------------|-----------|-----------|---------|---------|------|
| Volatile         | Organic Compounds           |               |                |           |                     |           |           |         |         |      |
| <i>Volatile</i>  | Organic Compounds by 8260.  | <u>B</u>      | Prepared by me | thod Vola | tiles               |           |           |         |         |      |
| 71-43-2          | Benzene                     | 453           | 5.0 μg/l       | 5         | SW846 8260B         | 10-Aug-05 | 10-Aug-05 | 5080723 | RLJ     |      |
| 100-41-4         | Ethylbenzene                | 11.1          | 5.0 μg/l       | 5         | 11                  | и         | "         | It      | u       |      |
| 1634-04-4        | Methyl tert-butyl ether     | 43.8          | 5.0 μg/l       | 5         | n                   | ıı        | "         | 11      | **      |      |
| 91-20-3          | Naphthalene                 | 224           | 5.0 μg/l       | 5         | "                   | 'n        | "         | Ħ       | **      |      |
| 108-88-3         | Toluene                     | 5.8           | 5.0 μg/l       | 5         | ı                   | ņ         | "         | n       | **      |      |
| 95-63 <b>-</b> 6 | 1,2,4-Trimethylbenzene      | 177           | 5.0 μg/l       | 5         | H                   | U         | "         | u       | **      |      |
| 108-67-8         | 1,3,5-Trimethylbenzene      | 64.6          | 5.0 μg/l       | 5         | n                   | n         | "         | u       | "       |      |
| 1330-20-7        | m,p-Xylene                  | 39.6          | 10.0 µg/l      | 5         | **                  | n         | **        | ıı      | . н     |      |
| 95-47-6          | o-Xylene                    | BRL           | 5.0 μg/l       | 5         | н                   | н         | "         | 11      | 11      |      |
| Surrogate        | recoveries:                 |               |                |           |                     |           |           |         |         |      |
| 460-00-4         | 4-Bromofluorobenzene        | 106           | 70-130 %       |           | "                   | "         | "         | n       | #       |      |
| 2037-26-5        | Toluene-d8                  | 99.2          | 70-130 %       |           | n                   | "         | **        | "       | "       |      |
| 17060-07-0       | 1,2-Dichloroethane-d4       | 104           | 70-130 %       |           | "                   | Ħ         | **        | H.      | "       |      |
| 1868-53-7        | Dibromofluoromethane        | 100           | 70-130 %       |           | n                   | 11        | 11        | 11      | n       |      |
| Extracta         | able Petroleum Hydrocarboi  | 18            |                |           |                     |           |           |         |         |      |
| Diesel R         | ange Organics               |               | Prepared by me | thod SW8  | 46 3535             |           |           |         |         |      |
| 68476-30-2       | Fuel Oil #2                 | Calculated as | 0.2 mg/l       | 1         | 8015BM/ME4.1<br>.25 | 08-Aug-05 | 09-Aug-05 | 5080507 | KG      |      |
| 68476-31-3       | Fuel Oil #4                 | BRL           | 0.2 mg/l       | 1         | **                  | **        | "         | **      | D       |      |
| 68553-00-4       | Fuel Oil #6                 | BRL           | 0.2 mg/l       | 1         | Ħ                   | "         | IJ        | n       | n       |      |
| M09800000        | Motor Oil                   | BRL           | 0.2 mg/l       | 1         | 11                  | н         | 11        | n       | **      |      |
| 0000010000       | Aviation Fuel               | BRL           | 0.2 mg/l       | 1         | 11                  | II .      | n         | 17      | "       |      |
|                  | Unidentified                | 2.6           | 0.2 mg/l       | . 1       | н                   | "         | 11        | **      | **      |      |
|                  | Other Oil                   | Calculated as | 0.2 mg/l       | . 1       | 11                  | n         | 11        | 11      | 11      |      |
|                  | Diesel Range Organics (DRO) | 2.6           | 0.2 mg/l       | 1         | t†                  | ıı        | "         | 11      | H       |      |
| Surrogate        | recoveries:                 |               |                |           |                     |           |           |         |         |      |
| 3386-33-2        | 1-Chlorooctadecane          | 83.2          | 40-140 %       |           | **                  | ***       | , "       | 19      | **      |      |

Sample Identification MW-17

SA31998-12

Client Project # 08-204262

Matrix Product Collection Date/Time 29-Jul-05 11:45

| CAS No.    | Analyte(s)                   | Result        | *RDL/Units     | Dilution  | Method Ref.        | Prepared  | Analyzed  | Batch   | Analyst | Flag |
|------------|------------------------------|---------------|----------------|-----------|--------------------|-----------|-----------|---------|---------|------|
| Extracta   | able Petroleum Hydrocarboi   | 18            |                |           | ,                  |           | -         |         |         |      |
| TPH 810    | 00 by GC                     |               | Prepared by me | thod SW84 | 46 3550B           |           |           |         |         |      |
| 8006-61-9  | Gasoline                     | Calculated as | 3380 mg/kg     | 1         | +SW846<br>8100Mod. | 10-Aug-05 | 11-Aug-05 | 5080701 | KG      |      |
| 68476-30-2 | Fuel Oil #2                  | Calculated as | 3380 mg/kg     | 1         | "                  | "         | Ħ         | Ħ       | 11      |      |
| 68476-31-3 | Fuel Oil #4                  | BRL           | 3380 mg/kg     | 1         | "                  | "         | "         | "       | 19      |      |
| 68553-00-4 | Fuel Oil #6                  | BRL           | 3380 mg/kg     | 1         | n                  | "         | "         | 11      | n       |      |
| M09800000  | Motor Oil                    | BRL           | 3380 mg/kg     | 1         | 11                 | **        | n         | **      | 19      |      |
| 8032-32-4  | Ligroin                      | BRL           | 3380 mg/kg     | 1         | 11                 | "         | "         | 11      | 11      |      |
| J00100000  | Aviation Fuel                | BRL           | 3380 mg/kg     | 1         | "                  | 11        | **        | *1      | 11      |      |
|            | Unidentified                 | 70,200        | 3380 mg/kg     | 1         | "                  | **        | "         | u       | 10      |      |
|            | Other Oil                    | BRL           | 3380 mg/kg     | 1         | "                  | **        | **        | 11      | 11      |      |
|            | Total Petroleum Hydrocarbons | 70,200        | 3380 mg/kg     | 1         | 11                 | **        | **        | "       | H       |      |
| Surrogate  | recoveries:                  |               |                |           |                    |           |           |         |         |      |
| 3386-33-2  | 1-Chlorooctadecane           | 178           | 40-140 %       |           | n                  | **        | **        | **      | "       | S-02 |

Matrix Ground Water Collection Date/Time 29-Jul-05 13:35

| CAS No.    | Analyte(s)                  | Result        | *RDL/Units     | Dilution  | Method Ref.         | Prepared  | Analyzed  | Batch   | Analyst | Flag |
|------------|-----------------------------|---------------|----------------|-----------|---------------------|-----------|-----------|---------|---------|------|
| Volatile   | Organic Compounds           |               |                |           |                     |           |           |         |         |      |
| Volatile ( | Organic Compounds by 8260.  | <u>B</u>      | Prepared by me | thod Vola | tiles               |           |           |         |         |      |
| 71-43-2    | Benzene                     | 2,770         | 100 µg/l       | 100       | SW846 8260B         | 10-Aug-05 | 10-Aug-05 | 5080723 | RLJ     |      |
| 100-41-4   | Ethylbenzene                | 1,310         | 100 μg/l       | 100       | n                   | "         | "         | **      | **      |      |
| 1634-04-4  | Methyl tert-butyl ether     | 1,570         | 100 µg/l       | 100       | n                   | "         | "         | n       | "       |      |
| 91-20-3    | Naphthalene                 | 824           | 100 µg/l       | 100       | n                   | n         | ,         | "       | n       |      |
| 108-88-3   | Toluene                     | 6,290         | 100 µg/l       | 1.00      | n                   | u         | "         | H       | n       |      |
| 95-63-6    | 1,2,4-Trimethylbenzene      | 3,230         | 100 μg/l       | 100       | •                   | "         | P         | Iţ      | н       |      |
| 108-67-8   | 1,3,5-Trimethylbenzene      | 905           | 100 μg/l       | 100       | 11                  | "         | "         | H       | n       |      |
| 1330-20-7  | m,p-Xylene                  | 6,250         | 200 μg/l       | 100       | n                   | "         | n         | и       | **      |      |
| 95-47-6    | o-Xylene                    | 2,820         | 100 μg/l       | 100       | 11                  | "         | 11        | "       | n       |      |
| Surrogate  | recoveries:                 |               |                |           |                     |           |           |         |         |      |
| 460-00-4   | 4-Bromofluorobenzene        | 106           | 70-130 %       |           | **                  | n         | "         | If      | **      |      |
| 2037-26-5  | Toluene-d8                  | 101           | 70-130 %       |           | "                   | "         | 0         | 11      | ***     |      |
| 17060-07-0 | 1,2-Dichloroethane-d4       | 106           | 70-130 %       |           | 11                  | "         | tr        | n       | 11      |      |
| 1868-53-7  | Dibromofluoromethane        | 99.4          | 70-130 %       |           | If                  | II.       | 10        | "       | 11      |      |
| Extracta   | ible Petroleum Hydrocarboi  | ns            |                |           |                     |           |           |         |         |      |
| Diesel Ro  | ange Organics               |               | Prepared by me | thod SW8  | 46 3535             |           |           |         |         |      |
| 68476-30-2 | Fuel Oil #2                 | Calculated as | 0.2 mg/l       | 1         | 8015BM/ME4.1<br>.25 | 08-Aug-05 | 09-Aug-05 | 5080507 | KG      |      |
| 68476-31-3 | Fuel Oil #4                 | BRL           | 0.2 mg/l       | 1         | **                  | u         | "         | n       | *1      |      |
| 68553-00-4 | Fuel Oil #6                 | BRL           | 0.2 mg/l       | 1         | 11                  | **        | U         | **      | **      |      |
| M09800000  | Motor Oil                   | BRL           | 0.2 mg/l       | 1         | H                   | 11        | "         | 11      | **      |      |
| J00100000  | Aviation Fuel               | BRL           | 0.2 mg/l       | 1         | "                   | 19        | 11        | "       | "       |      |
|            | Unidentified                | 15.3          | 0.2 mg/l       | 1         | 11                  | n         | "         | *1      | "       |      |
|            | Other Oil                   | Calculated as | 0.2 mg/l       | 1         | u                   | 11        | **        | 11      | 11      |      |
|            | Diesel Range Organics (DRO) | 15.3          | 0.2 mg/l       | 1         | *1                  | n         | "         | "       | u u     |      |
| Surrogate  | recoveries:                 | 1.00          |                |           |                     |           |           |         |         |      |
| 3386-33-2  | 1-Chlorooctadecane          | 165           | 40-140 %       |           | **                  | n         | u         | 11      | **      | S-02 |

Sample Identification MW-19 SA31998-14

Client Project # 08-204262

Matrix Product Collection Date/Time 29-Jul-05 12:55

| CAS No.    | Analyte(s)                   | Result        | *RDL/Units     | Dilution | Method Ref.        | Prepared  | Analyzed  | Batch   | Analyst Flag |
|------------|------------------------------|---------------|----------------|----------|--------------------|-----------|-----------|---------|--------------|
| Extracta   | ıble Petroleum Hydrocarboi   | 18            |                |          |                    |           |           |         |              |
| TPH 810    | 00 by GC                     |               | Prepared by me | thod SW8 | 46 3550B           |           |           |         |              |
| 8006-61-9  | Gasoline                     | Calculated as | 3710 mg/kg     | 1        | +SW846<br>8100Mod. | 10-Aug-05 | 11-Aug-05 | 5080701 | KG           |
| 68476-30-2 | Fuel Oil #2                  | Calculated as | 3710 mg/kg     | 1        | u                  | 11        | n         | n       | H            |
| 68476-31-3 | Fuel Oil #4                  | BRL           | 3710 mg/kg     | 1        | tt                 | 11        | II .      | Ħ       | u            |
| 68553-00-4 | Fuel Oil #6                  | BRL           | 3710 mg/kg     | 1        | Ü                  | "         | n         | u       | n            |
| M09800000  | Motor Oil                    | BRL           | 3710 mg/kg     | 1        | n                  | "         | n         | U       | u .          |
| 8032-32-4  | Ligroin                      | BRL           | 3710 mg/kg     | 1        | "                  | "         | "         | ij      | II .         |
| J00100000  | Aviation Fuel                | BRL           | 3710 mg/kg     | 1        | n                  | **        | 11        | u       | U            |
|            | Unidentified                 | 23,200        | 3710 mg/kg     | 1        | 11                 | n         | "         | u       | n            |
|            | Other Oil                    | BRL           | 3710 mg/kg     | 1        | **                 | P         | "         | n       | 11           |
|            | Total Petroleum Hydrocarbons | 23,200        | 3710 mg/kg     | 1        | 11                 | H         | 11        | n       | IF           |
| Surrogate  | recoveries:                  |               |                |          |                    |           |           |         |              |
| 3386-33-2  | 1-Chlorooctadecane           | 85.1          | 40-140 %       |          | н                  | Ħ         | u         | n       | 11           |

Matrix Ground Water Collection Date/Time 29-Jul-05 13:45

| CAS No.         | Analyte(s)                  | Result                                 | *RDL/Units     | Dilution  | Method Ref.         | Prepared  | Analyzed  | Batch   | Analyst | Flag |
|-----------------|-----------------------------|----------------------------------------|----------------|-----------|---------------------|-----------|-----------|---------|---------|------|
| Volatile        | Organic Compounds           |                                        |                |           |                     |           |           |         |         |      |
| <u>Volatile</u> | Organic Compounds by 8260   | <u>B</u>                               | Prepared by me | thod Vola | tiles               |           |           |         |         |      |
| 71-43-2         | Benzene                     | 616                                    | 50.0 μg/l      | 50        | SW846 8260B         | 08-Aug-05 | 09-Aug-05 | 5080574 | tim     |      |
| 100-41-4        | Ethylbenzene                | 1,050                                  | 50.0 μg/l      | 50        | . "                 | **        | "         | n       | **      |      |
| 1634-04-4       | Methyl tert-butyl ether     | BRL                                    | 50.0 μg/l      | 50        | н                   | **        | 11        | н       | **      |      |
| 91-20-3         | Naphthalene                 | 352                                    | 50.0 μg/l      | 50        | 11                  | **        | 17        | "       | **      |      |
| 108-88-3        | Toluene                     | 1,450                                  | 50.0 μg/l      | 50        | 11                  | 11        | 11        | "       | **      |      |
| 95-63-6         | 1,2,4-Trimethylbenzene      | 1,310                                  | 50.0 μg/l      | 50        | 11                  | **        | 11        | "       | **      |      |
| 108-67-8        | 1,3,5-Trimethylbenzene      | 363                                    | 50.0 μg/l      | 50        | 11                  | u u       | R         | **      | n       |      |
| 1330-20-7       | m,p-Xylene                  | 4,020                                  | 100 μg/l       | 50        | n                   | u         | **        | **      | u u     |      |
| 95-47-6         | o-Xylene                    | 996                                    | 50.0 μg/l      | 50        | 0                   | "         | **        | #       | 11      |      |
| Surrogate       | recoveries:                 |                                        |                |           |                     |           |           |         |         |      |
| 460-00-4        | 4-Bromofluorobenzene        | 95.6                                   | 70-130 %       |           | If                  | "         | n         | **      | 0       |      |
| 2037-26-5       | Toluene-d8                  | 98.4                                   | 70-130 %       |           | 11                  | "         | н         | u       | 11      |      |
| 17060-07-0      | 1,2-Dichloroethane-d4       | 105                                    | 70-130 %       |           | 17                  | "         | **        | **      | n       |      |
| 1868-53-7       | Dibromofluoromethane        | 91.2                                   | 70-130 %       |           | ii                  | "         | n         | Ħ       | U       |      |
| Extracta        | able Petroleum Hydrocarbo   | ns                                     |                |           |                     |           |           |         |         |      |
| Diesel R        | ange Organics               |                                        | Prepared by me | thod SW8  | 46 3535             |           |           |         |         |      |
| 68476-30-2      | Fuel Oil #2                 | Calculated as                          | 0.2 mg/l       | 1         | 8015BM/ME4.1<br>.25 | 08-Aug-05 | 09-Aug-05 | 5080507 | KG      |      |
| 68476-31-3      | Fuel Oil #4                 | BRL                                    | 0.2 mg/l       | 1         | II.                 | "         | **        | u       | **      |      |
| 68553-00-4      | Fuel Oil #6                 | BRL                                    | 0.2 mg/l       | 1         | U                   | "         | "         | "       | tt      |      |
| M09800000       | Motor Oil                   | BRL                                    | 0.2 mg/l       | 1         | U                   | 0         | n         | "       | 11      |      |
| J00100000       | Aviation Fuel               | BRL                                    | 0.2 mg/l       | 1         | n                   | Ħ         | **        | **      | n       |      |
|                 | Unidentified                | 3.5                                    | 0.2 mg/l       | 1         | n                   | n         | **        | **      | **      |      |
|                 | Other Oil                   | Calculated as                          | 0.2 mg/l       | 1         | n                   | ı,        | ŧr        | **      | Ħ       |      |
|                 | Diesel Range Organics (DRO) | 3.5                                    | 0.2 mg/l       | 1         | "                   | Ħ         | Ħ         | "       | n       |      |
| Surrogate       | recoveries:                 | ************************************** |                |           |                     |           |           |         |         |      |
| 3386-33-2       | 1-Chlorooctadecane          | 97.3                                   | 40-140 %       |           | n                   | u         | 11        | "       | n       |      |

Matrix Ground Water Collection Date/Time 29-Jul-05 13:20

| CAS No.         | Analyte(s)                  | Result        | *RDL/Units     | Dilution  | Method Ref.  | Prepared  | Analyzed  | Batch   | Analyst 1 | Flag |
|-----------------|-----------------------------|---------------|----------------|-----------|--------------|-----------|-----------|---------|-----------|------|
| Volatile        | Organic Compounds           |               |                |           |              | •         |           |         |           |      |
| <u>Volatile</u> | Organic Compounds by 8260   | <u>B</u>      | Prepared by me | thod Vola | tiles        |           |           |         |           |      |
| 71-43-2         | Benzene                     | 572           | 10.0 µg/l      | 10        | SW846 8260B  | 08-Aug-05 | 09-Aug-05 | 5080574 | tim       |      |
| 100-41-4        | Ethylbenzene                | 11.8          | 10.0 μg/l      | 10        | n            | H.        | u         | U       | **        |      |
| 1634-04-4       | Methyl tert-butyl ether     | 44.1          | 10.0 μg/l      | 10        | u            | **        | 11        | Ħ       | 11        |      |
| 91-20-3         | Naphthalene                 | 163           | 10.0 μg/l      | 10        | Ħ            | n         | **        | "       | **        |      |
| 108-88-3        | Toluene                     | BRL           | 10.0 µg/l      | 10        | 11           | **        | "         | "       | **        |      |
| 95-63-6         | 1,2,4-Trimethylbenzene      | 175           | 10.0 µg/l      | 10        | *1           | Ħ         | "         | 11      | "         |      |
| 108-67-8        | 1,3,5-Trimethylbenzene      | 67.5          | 10.0 μg/l      | 10        | 11           | "         | "         | 11      | n         |      |
| 1330-20-7       | m,p-Xylene                  | 43.3          | 20.0 μg/l      | 10        | 11           | "         | **        | "       | n         |      |
| 95-47-6         | o-Xylene                    | BRL           | 10.0 μg/l      | 10        | Ħ            | 11        | 11        | "       | "         |      |
| Surrogate       | recoveries:                 |               |                |           |              |           |           |         |           |      |
| 460-00-4        | 4-Bromofluorobenzene        | 95.2          | 70-130 %       |           | H            | n         | H         | и       | "         |      |
| 2037-26-5       | Toluene-d8                  | 98.2          | 70-130 %       |           | 11           | "         | "         | n       | n         |      |
| 17060-07-0      | 1,2-Dichloroethane-d4       | 100           | 70-130 %       |           | 11           | "         | II .      | , "     | "         |      |
| 1868-53-7       | Dibromofluoromethane        | 91.0          | 70-130 %       |           | "            | 11        | II.       | n       | "         |      |
| Extracta        | able Petroleum Hydrocarbo   | ns            |                |           |              |           |           |         |           |      |
| Diesel R        | ange Organics               |               | Prepared by me | thod SW8  | 46 3535      |           |           |         |           |      |
| 68476-30-2      | Fuel Oil #2                 | Calculated as | 0.2 mg/l       | 1         | 8015BM/ME4.1 | 08-Aug-05 | 09-Aug-05 | 5080507 | KG        |      |
| 68476-31-3      | Fuel Oil #4                 | BRL           | 0.2 mg/l       | 1         | †I           | n         | "         | n       | 11        |      |
| 68553-00-4      | Fuel Oil #6                 | BRL           | 0.2 mg/l       | 1         | 11           | "         | н         | **      | n         |      |
| M09800000       | Motor Oil                   | BRL           | 0.2 mg/l       | 1         | 11           | *         | 11        | 11      | Ħ         |      |
| J00100000       | Aviation Fuel               | BRL           | 0.2 mg/l       | 1         | H            | 19        | u         | 11      | **        |      |
|                 | Unidentified                | 2.1           | 0.2 mg/l       | l         | "            | II .      | **        | **      | Ħ         |      |
|                 | Other Oil                   | Calculated as | 0.2 mg/l       | 1         | **           | Ħ         | **        | **      | 11        |      |
|                 | Diesel Range Organics (DRO) | 2.1           | 0.2 mg/l       | 1         | Ħ,           | "         |           | 11      | 11        |      |
| Surrogate       | e recoveries:               |               |                |           |              |           |           |         |           |      |
| 3386-33-2       | 1-Chlorooctadecane          | 72.1          | 40-140 %       | i         | U            | 11        | n         | 11      | 19        |      |

Matrix Ground Water Collection Date/Time 29-Jul-05 15:00

| CAS No.          | Analyte(s)                  | Result        | *RDL/Units     | Dilution  | Method Ref.         | Prepared  | Analyzed  | Batch   | Analyst | Flag |
|------------------|-----------------------------|---------------|----------------|-----------|---------------------|-----------|-----------|---------|---------|------|
| Volatile         | Organic Compounds           |               |                |           |                     |           |           | ·       |         |      |
| <u>Volatile</u>  | Organic Compounds by 8260   | <u>B</u>      | Prepared by me | thod Vola | tiles               |           |           |         |         |      |
| 71-43-2          | Benzene                     | 150           | 10.0 μg/l      | 10        | SW846 8260B         | 08-Aug-05 | 09-Aug-05 | 5080574 | tim     |      |
| 100-41-4         | Ethylbenzene                | 121           | 10.0 μg/l      | 10        | H                   | "         | 11        | n       | **      |      |
| 1634-04-4        | Methyl tert-butyl ether     | BRL           | 10.0 μg/l      | 10        | n                   | **        | 11        | 11      | "       |      |
| 91-20-3          | Naphthalene                 | 50.6          | 10.0 μg/l      | 10        | **                  |           | 11        | n       | 11      |      |
| 108-88-3         | Toluene                     | 25.7          | 10.0 μg/l      | 10        | n                   | n         | 11        | 19      | 11      |      |
| 95-63-6          | 1,2,4-Trimethylbenzene      | 126           | 10.0 μg/l      | 10        | "                   | 11        | 11        | "       | 11      |      |
| 108-67-8         | 1,3,5-Trimethylbenzene      | 41.3          | 10.0 μg/l      | 10        | n                   | 11        | 11        |         | **      |      |
| 1330-20-7        | m,p-Xylene                  | 437           | 20.0 μg/l      | 10        | n                   | 11        | 11        | 19      | tı      |      |
| 95 <b>-</b> 47-6 | o-Xylene                    | BRL           | 10.0 μg/l      | 10        | "                   | "         | 11        | 'n      | u       |      |
| Surrogate        | recoveries:                 |               |                |           |                     |           |           |         |         |      |
| 460-00-4         | 4-Bromofluorobenzene        | 98.6          | 70-130 %       |           | U                   | 11        | 11        | 11      | 0       |      |
| 2037-26-5        | Toluene-d8                  | 98.0          | 70-130 %       |           | 11                  | It        | и         | "       | **      |      |
| 17060-07-0       | 1,2-Dichloroethane-d4       | 107           | 70-130 %       |           | "                   | 11        | 11        | 11      | **      |      |
| 1868-53-7        | Dibromofluoromethane        | 92.8          | 70-130 %       |           | "                   | 11        | 11        | 11      | 11      |      |
| Extracta         | ible Petroleum Hydrocarboi  | ns            |                |           |                     |           |           |         |         |      |
| Diesel R         | ange Organics               |               | Prepared by me | thod SW8  | 46 3535             |           |           |         |         |      |
| 68476-30-2       | Fuel Oil #2                 | Calculated as | 0.2 mg/l       | 1         | 8015BM/ME4.1<br>.25 | 08-Aug-05 | 09-Aug-05 | 5080507 | KG      |      |
| 68476-31-3       | Fuel Oil #4                 | BRL           | 0.2 mg/l       | 1         | u,                  | n         | u u       | n       | H       |      |
| 68553-00-4       | Fuel Oil #6                 | BRL           | 0.2 mg/l       | 1         | u u                 | "         | n         | 11      | "       |      |
| M09800000        | Motor Oil                   | BRL           | 0.2 mg/l       | 1         | 11                  | n         | 11        | n       | n       |      |
| J00100000        | Aviation Fuel               | BRL           | 0.2 mg/l       | 1         | Ħ                   | "         | 11        | ŧı      | "       |      |
|                  | Unidentified                | 1.7           | 0.2 mg/l       | 1         | . "                 | "         | II.       | U       | "       |      |
|                  | Other Oil                   | Calculated as | 0.2 mg/l       | 1         | н                   | **        | 11        | "       | n       |      |
|                  | Diesel Range Organics (DRO) | 1.7           | 0.2 mg/l       | 1         | U                   | **        | 11        | "       | **      |      |
| Surrogate        | recoveries:                 |               |                |           |                     |           |           |         |         |      |
| 3386-33-2        | 1-Chlorooctadecane          | 79.0          | 40-140 %       |           | 11                  | 11        | "         | 11      | н       |      |
|                  |                             |               |                |           |                     |           |           |         |         |      |

Matrix Ground Water Collection Date/Time 29-Jul-05 14:50

| CAS No.           | Analyte(s)                  | Result        | *RDL/Units      | Dilution  | Method Ref.         | Prepared  | Analyzed  | Batch   | Analyst | Flag |
|-------------------|-----------------------------|---------------|-----------------|-----------|---------------------|-----------|-----------|---------|---------|------|
| Volatile          | Organic Compounds           |               |                 |           |                     |           |           |         |         |      |
| Volatile (        | Organic Compounds by 8260.  | <u>B</u>      | Prepared by met | hod Volat | tiles               |           |           |         |         |      |
| 71-43-2           | Benzene                     | BRL           | 1.0 µg/l        | 1         | SW846 8260B         | 08-Aug-05 | 09-Aug-05 | 5080574 | tim     |      |
| 100-41-4          | Ethylbenzene                | BRL           | 1.0 μg/l        | 1         | II                  | n         |           | n       | **      |      |
| 1634-04-4         | Methyl tert-butyl ether     | BRL           | 1.0 μg/l        | 1         | ıı .                | n         | **        | n       | **      |      |
| 91-20-3           | Naphthalene                 | BRL           | 1.0 μg/l        | 1         | ı,                  | 11        | "         | n       | "       |      |
| 108-88 <b>-</b> 3 | Toluene                     | BRL           | 1.0 μg/l        | 1         | **                  | 11        | **        | n       | Ħ       |      |
| 95-63-6           | 1,2,4-Trimethylbenzene      | BRL           | 1.0 μg/l        | 1         | 11                  | 11        | **        | n       | "       |      |
| 108-67 <b>-</b> 8 | 1,3,5-Trimethylbenzene      | BRL           | 1.0 μg/l        | 1         | "                   | 11        | n         | U       | R       |      |
| 1330-20-7         | m,p-Xylene                  | BRL           | 2.0 μg/l        | 1         | ii                  | u         | **        | n       | "       |      |
| 95-47-6           | o-Xylene                    | BRL           | 1.0 µg/l        | 1         | 11                  | "         | · ·       | "       | **      |      |
| Surrogate         | recoveries:                 |               |                 |           |                     |           |           |         |         |      |
| 460-00-4          | 4-Bromofluorobenzene        | 94.2          | 70-130 %        |           | "                   | tt        | "         | n       | n       |      |
| 2037-26-5         | Toluene-d8                  | 99.0          | 70-130 %        |           | 11                  | **        | "         | H       | "       |      |
| 17060-07-0        | 1,2-Dichloroethane-d4       | 101           | 70-130 %        |           |                     | **        | n         | 11      | "       |      |
| 1868-53-7         | Dibromofluoromethane        | 89.2          | 70-130 %        |           | n                   | "         | u         | "       | D       |      |
| Extracta          | ıble Petroleum Hydrocarboi  | ns            |                 |           |                     |           |           |         |         |      |
| Diesel R          | ange Organics               |               | Prepared by met | thod SW8  | 46 3535             |           |           |         |         |      |
| 68476-30-2        | Fuel Oil #2                 | BRL           | 0.2 mg/l        | 1         | 8015BM/ME4.1<br>.25 | 08-Aug-05 | 09-Aug-05 | 5080507 | KG      |      |
| 68476-31-3        | Fuel Oil #4                 | BRL           | 0.2 mg/l        | 1         | 11                  | н         | n         | *1      | 11      |      |
| 68553-00-4        | Fuel Oil #6                 | BRL           | 0.2 mg/l        | 1         | n                   | 11        | n         | 11      | **      |      |
| M09800000         | Motor Oil                   | BRL           | 0.2 mg/l        | 1         | **                  | n         | 11        | "       | n       |      |
| J00100000         | Aviation Fuel               | BRL           | 0.2 mg/l        | 1         | **                  | tt        | 11        | 11      | 11      |      |
|                   | Unidentified                | 0.4           | 0.2 mg/l        | 1         | It                  | *1        | 11        | n       | 11      |      |
|                   | Other Oil                   | Calculated as | 0.2 mg/l        | 1         | "                   | 11        | u         | "       | n       |      |
|                   | Diesel Range Organics (DRO) | 0.4           | 0.2 mg/l        | 1         | 11                  | **        | 11        | H       | 11      |      |
| Surrogate         | recoveries:                 |               |                 |           |                     |           |           |         |         |      |
| 3386-33-2         | 1-Chlorooctadecane          | 56.8          | 40-140 %        |           | 11                  | II .      | 11        | "       | "       |      |

Matrix Ground Water Collection Date/Time 29-Jul-05 14:40

| CAS No.         | Analyte(s)                  | Result        | *RDL/Units     | Dilution  | Method Ref.         | Prepared  | Analyzed  | Batch   | Analyst Fl |
|-----------------|-----------------------------|---------------|----------------|-----------|---------------------|-----------|-----------|---------|------------|
| —<br>Volatile   | Organic Compounds           |               |                |           |                     |           |           |         |            |
| <u>Volatile</u> | Organic Compounds by 8260   | <u>B</u>      | Prepared by me | thod Vola | tiles               |           |           |         |            |
| 71-43-2         | Benzene                     | BRL           | 1.0 µg/l       | 1         | SW846 8260B         | 08-Aug-05 | 09-Aug-05 | 5080574 | tim        |
| 100-41-4        | Ethylbenzene                | BRL           | 1.0 μg/l       | 1         | n                   | n         | n         | "       | "          |
| 1634-04-4       | Methyl tert-butyl ether     | BRL           | 1.0 µg/l       | 1         | n                   | "         | n         | "       | "          |
| 91-20-3         | Naphthalene                 | BRL           | 1.0 µg/l       | 1         | "                   | "         | "         | 11      | u          |
| 108-88-3        | Toluene                     | BRL           | 1.0 µg/l       | 1         | ıı                  | "         | "         | "       | U          |
| 95-63-6         | 1,2,4-Trimethylbenzene      | BRL           | 1.0 µg/l       | 1         | U                   | ··        | n         | n       | "          |
| 108-67-8        | 1,3,5-Trimethylbenzene      | BRL           | 1.0 µg/l       | 1         | n                   | 17        | "         | "       | "          |
| 1330-20-7       | m,p-Xylene                  | BRL           | 2.0 μg/l       | 1         | ıı                  | n         | "         | "       | n          |
| 95-47-6         | o-Xylene                    | BRL           | 1.0 μg/l       | 1         | 0                   | "         | ii.       | "       | 11         |
| Surrogate       | recoveries:                 |               |                |           |                     |           |           |         |            |
| 460-00-4        | 4-Bromofluorobenzene        | 95.4          | 70-130 %       |           | U                   | n         | II .      | 11      | "          |
| 2037-26-5       | Toluene-d8                  | 98.8          | 70-130 %       |           | n                   | n         | u         | **      | "          |
| 17060-07-0      | 1,2-Dichloroethane-d4       | 103           | 70-130 %       |           | n                   | **        | 11        | 11      | "          |
| 1868-53-7       | Dibromofluoromethane        | 89.8          | 70-130 %       |           | 11                  | "         | n         | 11      | "          |
| Extracta        | able Petroleum Hydrocarbo   | ns            |                |           |                     |           |           |         |            |
| Diesel R        | ange Organics               |               | Prepared by me | thod SW8  | 46 3535             |           |           |         |            |
| 68476-30-2      | Fuel Oil #2                 | BRL           | 0.2 mg/l       | 1         | 8015BM/ME4.1<br>.25 | 08-Aug-05 | 09-Aug-05 | 5080507 | KG         |
| 68476-31-3      | Fuel Oil #4                 | BRL           | 0.2 mg/l       | 1         | H                   | 11        | n         | IF      | u          |
| 68553-00-4      | Fuel Oil #6                 | BRL           | 0.2 mg/l       | 1         | 11                  | 11        | n         | 17      | "          |
| M09800000       | Motor Oil                   | BRL           | 0.2 mg/l       | 1         | "                   | 11        | ıı        | n       | It         |
| J00100000       | Aviation Fuel               | BRL           | 0.2 mg/l       | 1         | "                   | ti        | "         | 11      | 11         |
|                 | Unidentified                | 0.5           | 0.2 mg/l       | 1         | 11                  | **        | 11        | **      | n          |
|                 | Other Oil                   | Calculated as | 0.2 mg/l       | 1         | 11                  | **        | 11        | **      | **         |
|                 | Diesel Range Organics (DRO) | 0.5           | 0.2 mg/l       | 1         | u                   | n         | 11        | 11      | "          |
| Surrogate       | e recoveries:               |               |                |           |                     |           |           |         |            |
| 3386-33-2       | 1-Chlorooctadecane          | 54.2          | 40-140 %       |           | H                   | **        | **        | 19      | 11         |

| Analyte(s)                                                       | Result       | *RDL Units      | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits   | RPD              | RPD<br>Limit | Flag   |
|------------------------------------------------------------------|--------------|-----------------|----------------|------------------|--------------|------------------|------------------|--------------|--------|
| Batch 5080574 - Volatiles                                        |              |                 |                |                  |              |                  |                  |              |        |
| Blank (5080574-BLK1)                                             |              |                 | Prepared:      | 08-Aug-0         | 5 Analyz     | ed: 09-Aug       | ;-05             |              |        |
| Benzene                                                          | BRL          | 1.0 μg/l        |                |                  |              |                  |                  |              |        |
| Ethylbenzene                                                     | BRL          | 1.0 µg/l        |                |                  |              |                  |                  |              |        |
| Methyl tert-butyl ether                                          | BRL          | 1.0 µg/l        |                |                  |              |                  |                  |              |        |
| Naphthalene                                                      | BRL          | 1.0 µg/l        |                |                  |              |                  |                  |              |        |
| Toluene                                                          | BRL          | 1.0 μg/l        |                |                  |              |                  | •                |              |        |
| 1,2,4-Trimethylbenzene                                           | BRL          | 1.0 µg/l        |                |                  |              |                  |                  |              |        |
| 1,3,5-Trimethylbenzene                                           | BRL          | 1.0 µg/l        |                |                  |              |                  |                  |              |        |
| m,p-Xylene                                                       | BRL          | 2.0 μg/l        |                |                  |              |                  |                  |              |        |
| o-Xylene                                                         | BRL          | 1.0 µg/l        |                |                  |              |                  |                  |              |        |
| Surrogate: 4-Bromofluorobenzene                                  | 46.8         | μg/l            | 50.0           |                  | 93.6         | 70-130           |                  |              |        |
| Surrogate: Toluene-d8                                            | 48.6         | μg/l            | 50.0           |                  | 97.2         | 70-130           |                  |              |        |
| Surrogate: 1,2-Dichloroethane-d4                                 | 51.2         | μg/l            | 50.0           |                  | 102          | 70-130           |                  |              |        |
| Surrogate: Dibromofluoromethane                                  | 46.1         | μg/l            | 50.0           |                  | 92.2         | 70-130           |                  |              |        |
| LCS (5080574-BS1)                                                |              |                 | Prepared:      | 08-Aug-0         | 5 Analyz     | ed: 09-Aug       | g-05             |              |        |
| Benzene                                                          | 21.1         | μg/l            | 20.0           |                  | 106          | 70-130           | ,                |              |        |
| Ethylbenzene                                                     | 20.1         | μg/l            | 20.0           |                  | 100          | 70-130           |                  |              |        |
| Methyl tert-butyl ether                                          | 20.2         | μg/l            | 20.0           |                  | 101          | 70-130           |                  |              |        |
| Naphthalene                                                      | 19.5         | μg/l            | 20.0           |                  | 97.5         | 70-130           |                  |              |        |
| Toluene                                                          | 21.4         | μg/l            | 20.0           |                  | 107          | 70-130           |                  |              |        |
| 1,2,4-Trimethylbenzene                                           | 19.1         | μg/l            | 20.0           |                  | 95.5         | 70-130           |                  |              |        |
| 1,3,5-Trimethylbenzene                                           | 19.2         | μg/l            | 20.0           |                  | 96.0         | 70-130           |                  |              |        |
| m,p-Xylene                                                       | 40.2         | μg/l            | 40.0           |                  | 100          | 70-130           |                  |              |        |
| o-Xylene                                                         | 19.3         | μg/l            | 20.0           |                  | 96.5         | 70-130           |                  |              |        |
| Surrogate: 4-Bromofluorobenzene                                  | 46.3         | μg/l            | 50.0           |                  | 92.6         | 70-130           |                  |              |        |
| Surrogate: Toluene-d8                                            | 48.7         | μg/l<br>μg/l    | 50.0           |                  | 97.4         | 70-130           |                  |              |        |
| Surrogate: 1,2-Dichloroethane-d4                                 | 50.4         | μg/l<br>μg/l    | 50.0           |                  | 101          | 70-130           |                  |              |        |
| Surrogate: Dibromofluoromethane                                  | 44.4         | . μg/l<br>μg/l  | 50.0           |                  | 88.8         | 70-130           |                  |              |        |
| -                                                                | 77.7         | ۳۵۰             |                | - ΩΩ- Δυα-Ο      |              | ed: 09-Aug       | <sub>2-</sub> 05 |              |        |
| LCS Dup (5080574-BSD1)                                           | 01.5         | м               |                | Vo-Aug-C         |              |                  |                  | 20           |        |
| Benzene                                                          | 21.5         | μ <b>g/l</b>    | 20.0           |                  | 108          | 70-130           | 1.87<br>1.98     | 30<br>30     |        |
| Ethylbenzene                                                     | 20.3         | μg/l            | 20.0           |                  | 102          | 70-130<br>70-130 | 1.96             | 30           |        |
| Methyl tert-butyl ether                                          | 18.2         | μg/l            | 20.0           |                  | 91.0         |                  | 13.7             | 30           |        |
| Naphthalene                                                      | 17.0         | μg/l<br>/       | 20.0<br>20.0   |                  | 85.0<br>108  | 70-130<br>70-130 | 0.930            | 30           |        |
| Toluene                                                          | 21.6         | μg/l<br>α/l     | 20.0           |                  | 98.5         | 70-130           | 3.09             | 30           |        |
| 1,2,4-Trimethylbenzene                                           | 19.7<br>19.7 | μg/l<br>α/l     | 20.0           |                  | 98.5         | 70-130           | 2.57             | 30           |        |
| 1,3,5-Trimethylbenzene                                           | 41.0         | μg/l<br>μg/l    | 40.0           |                  | 102          | 70-130           | 1.98             | 30           |        |
| m,p-Xylene<br>o-Xylene                                           | 19.7         | μg/l            | 20.0           |                  | 98.5         | 70-130           | 2.05             | 30           |        |
|                                                                  |              |                 | 50.0           |                  | 93.2         | 70-130           | 2.00             |              |        |
| Surrogate: 4-Bromofluorobenzene                                  | 46.6         | μg/l            | 50.0<br>50.0   |                  | 93.2<br>98.2 | 70-130<br>70-130 |                  |              |        |
| Surrogate: Toluene-d8                                            | 49.1         | μg/l<br>α/l     | 50.0           |                  | 95.6         | 70-130<br>70-130 |                  |              |        |
| Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane | 47.8<br>44.6 | μg/l<br>μg/l    | 50.0           |                  | 89.2         | 70-130           |                  |              |        |
| -                                                                |              |                 |                | . 00 4           |              |                  | - 05             |              |        |
| Matrix Spike (5080574-MS1)                                       |              | rce: SA31998-11 |                |                  |              | ed: 09-Aug       | 3-03             |              |        |
| Benzene                                                          | 23.5         | μg/l            | 20.0           | 0.191            | 117          | 70-130           |                  |              |        |
| Chlorobenzene                                                    | 16.4         | μg/l            | 20.0           | BRL              | 82.0         | 70-130           |                  |              | ON 4 O |
| 1,1-Dichloroethene                                               | 9.0          | μg/l            | 20.0           | BRL              | 45.0<br>70.0 | 70-130           |                  |              | QM-0   |
| Toluene                                                          | 15.8         | μg/l            | 20.0           | BRL              | 79.0         | 70-130           |                  |              | OM 0   |
| Trichloroethene                                                  | 13.1         | μg/l            | 20.0           | BRL              | 65.5         | 70-130           |                  |              | QM-0   |
| Surrogate: 4-Bromofluorobenzene                                  | 48.7         | μg/l            | 50.0           |                  | 97.4         | 70-130           |                  |              |        |
| Surrogate: Toluene-d8                                            | 49.8         | μg/l            | 50.0           |                  | 99.6         | 70-130           |                  |              |        |
| Surrogate: 1,2-Dichloroethane-d4                                 | 56.6         | μg/l            | 50.0           |                  | 113          | 70-130           |                  |              |        |
| Surrogate: Dibromofluoromethane                                  | 48.3         | μg/l            | 50.0           |                  | 96.6         | 70-130           |                  |              |        |
| Matrix Spike Dup (5080574-MSD1)                                  | Sou          | rce: SA31998-11 | Prepared       | : 08-Aug-0       | )5 Analy2    | ed: 09-Au        | g-05             |              |        |

| Analyte(s)                       | Result | *RDL Units      | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits | RPD   | RPD<br>Limit | Flag  |
|----------------------------------|--------|-----------------|----------------|------------------|-----------|----------------|-------|--------------|-------|
| Batch 5080574 - Volatiles        |        |                 |                |                  |           |                |       |              |       |
| Matrix Spike Dup (5080574-MSD1)  | Sou    | rce: SA31998-11 | Prepared:      | 08-Aug-0         | 5 Analyze | d: 09-Aug      | ;-05  |              |       |
| Benzene                          | 23.7   | μg/l            | 20.0           | 0.191            | 118       | 70-130         | 0.851 | 30           |       |
| Chlorobenzene                    | 15.8   | μg/l            | 20.0           | BRL              | 79.0      | 70-130         | 3.73  | 30           |       |
| 1,1-Dichloroethene               | 9.1    | μg/l            | 20.0           | BRL              | 45.5      | 70-130         | 1.10  | 30           | QM-07 |
| Toluene                          | 14.9   | μg/l            | 20.0           | BRL              | 74.5      | 70-130         | 5.86  | 30           |       |
| Trichloroethene                  | 12.8   | μg/l            | 20.0           | BRL              | 64.0      | 70-130         | 2.32  | 30           | QM-07 |
| Surrogate: 4-Bromofluorobenzene  | 47.4   | μg/l            | 50.0           |                  | 94.8      | 70-130         |       |              |       |
| Surrogate: Toluene-d8            | 49.4   | μg/l            | 50.0           |                  | 98.8      | 70-130         |       |              |       |
| Surrogate: 1,2-Dichloroethane-d4 | 52.6   | μg/l            | 50.0           |                  | 105       | 70-130         |       |              |       |
| Surrogate: Dibromofluoromethane  | 45.4   | μg/l            | 50.0           |                  | 90.8      | 70-130         |       |              |       |
| Batch 5080723 - Volatiles        |        |                 |                |                  |           |                |       |              |       |
| Blank (5080723-BLK1)             |        |                 | Prepared       | & Analyz         | ed: 10-Au | g-05           |       |              |       |
| Benzene                          | BRL    | 1.0 μg/l        |                |                  |           |                |       |              |       |
| Ethylbenzene                     | BRL    | 1.0 μg/l        |                |                  |           |                |       |              |       |
| Methyl tert-butyl ether          | BRL    | 1.0 μg/l        |                |                  |           |                |       |              |       |
| Naphthalene                      | BRL    | 1.0 μg/l        |                |                  |           |                |       |              |       |
| Toluene                          | BRL    | 1.0 μg/l        |                |                  |           |                |       |              |       |
| 1,2,4-Trimethylbenzene           | BRL    | 1.0 µg/l        |                |                  |           |                |       |              |       |
| 1,3,5-Trimethylbenzene           | BRL    | 1.0 µg/l        |                |                  |           |                |       |              |       |
| m,p-Xylene                       | BRL    | 2.0 μg/l        |                |                  |           |                |       |              |       |
| o-Xylene                         | BRL    | 1.0 µg/l        |                |                  |           |                |       |              |       |
| Surrogate: 4-Bromofluorobenzene  | 52.2   | μg/l            | 50.0           |                  | 104       | 70-130         |       |              |       |
| Surrogate: Toluene-d8            | 49.3   | μg/l            | 50.0           |                  | 98.6      | 70-130         |       |              |       |
| Surrogate: 1,2-Dichloroethane-d4 | 49.6   | μg/l            | 50.0           |                  | 99.2      | 70-130         |       |              |       |
| Surrogate: Dibromofluoromethane  | 50.9   | μg/l            | 50.0           |                  | 102       | 70-130         |       |              |       |
| LCS (5080723-BS1)                |        |                 | Prepared       | & Analyz         | ed: 10-Au |                |       |              |       |
| Benzene                          | 18.6   | μg/l            | 20.0           |                  | 93.0      | 70-130         |       |              |       |
| Ethylbenzene                     | 18.3   | μg/l            | 20.0           |                  | 91.5      | 70-130         |       |              |       |
| Methyl tert-butyl ether          | 21.3   | μg/l            | 20.0           |                  | 106       | 70-130         |       |              |       |
| Naphthalene                      | 20.5   | μg/l            | 20.0           |                  | 102       | 70-130         |       |              |       |
| Toluene                          | 18.2   | μg/l            | 20.0           |                  | 91.0      | 70-130         |       |              |       |
| 1,2,4-Trimethylbenzene           | 19.0   | μg/l            | 20.0           |                  | 95.0      | 70-130         |       |              |       |
| 1,3,5-Trimethylbenzene           | 18.8   | μg/l            | 20.0           |                  | 94.0      | 70-130         |       |              |       |
| m,p-Xylene                       | 36.0   | μg/l            | 40.0           |                  | 90.0      | 70-130         |       |              |       |
| o-Xylene                         | 20.3   | μg/l            | 20.0           |                  | 102       | 70-130         |       |              |       |
| Surrogate: 4-Bromofluorobenzene  | 52.2   | μg/l            | 50.0           |                  | 104       | 70-130         |       |              |       |
| Surrogate: Toluene-d8            | 49.8   | μg/l            | 50.0           |                  | 99.6      | 70-130         |       |              |       |
| Surrogate: 1,2-Dichloroethane-d4 | 54.1   | μg/l            | 50.0           |                  | 108       | 70-130         |       |              |       |
| Surrogate: Dibromofluoromethane  | 54.0   | μg/l            | 50.0           |                  | 108       | 70-130         |       |              |       |
| LCS Dup (5080723-BSD1)           |        |                 |                | & Analyz         | ed: 10-Au |                |       |              |       |
| Benzene                          | 18.9   | μg/l            | 20.0           |                  | 94.5      | 70-130         | 1.60  | 30           |       |
| Ethylbenzene                     | 19.9   | μg/l            | 20.0           |                  | 99.5      | 70-130         | 8.38  | 30           |       |
| Methyl tert-butyl ether          | 17.6   | μg/l<br>        | 20.0           |                  | 88.0      | 70-130         | 18.6  | 30           |       |
| Naphthalene                      | 18.7   | μg/l<br>"       | 20.0           |                  | 93.5      | 70-130         | 8.70  | 30           |       |
| Toluene                          | 18.5   | μg/l            | 20.0           |                  | 92.5      | 70-130         | 1.63  | 30           |       |
| 1,2,4-Trimethylbenzene           | 20.4   | μ <b>g/l</b>    | 20.0           |                  | 102       | 70-130         | 7.11  | 30           |       |
| 1,3,5-Trimethylbenzene           | 20.4   | μg/l            | 20.0           |                  | 102       | 70-130         | 8.16  | 30           |       |
| m,p-Xylene                       | 38.5   | μg/l            | 40.0           |                  | 96.2      | 70-130         | 6.66  | 30           |       |
| o-Xylene                         | 20.4   | μg/l            | 20.0           |                  | 102       | 70-130         | 0.00  | 30           |       |
| Surrogate: 4-Bromofluorobenzene  | 50.9   | μg/l            | 50.0           |                  | 102       | 70-130         |       |              |       |
| Surrogate: Toluene-d8            | 49.5   | μg/l            | 50.0           |                  | 99.0      | 70-130         |       |              |       |
| Surrogate: 1,2-Dichloroethane-d4 | 47.6   | μg/l<br>        | 50.0           |                  | 95.2      | 70-130         |       |              |       |
| Surrogate: Dibromofluoromethane  | 49.6   | μg/l            | 50.0           |                  | 99.2      | 70-130         |       |              |       |

|                                  |        | *               |                |                  |                                       |                |      |              |       |
|----------------------------------|--------|-----------------|----------------|------------------|---------------------------------------|----------------|------|--------------|-------|
| Analyte(s)                       | Result | *RDL Units      | Spike<br>Level | Source<br>Result | %REC                                  | %REC<br>Limits | RPD  | RPD<br>Limit | Flag  |
| Batch 5080723 - Volatiles        | -      |                 |                |                  | · · · · · · · · · · · · · · · · · · · |                |      |              |       |
| Matrix Spike (5080723-MS1)       | Sou    | rce: SA31851-09 | Prepared       | & Analyz         | ed: 10-Au                             | g-05           |      |              |       |
| Benzene                          | 21.2   | μg/l            | 20.0           | BRL              | 106                                   | 70-130         |      |              | •     |
| Chlorobenzene                    | 22.4   | μg/l            | 20.0           | BRL              | 112                                   | 70-130         |      |              |       |
| 1,1-Dichloroethene               | 20.6   | μg/l            | 20.0           | BRL              | 103                                   | 70-130         |      |              |       |
| Toluene                          | 28.4   | μg/l            | 20.0           | 7.60             | 104                                   | 70-130         |      |              |       |
| Trichloroethene                  | 21.2   | μg/l            | 20.0           | BRL              | 106                                   | 70-130         |      |              |       |
| Surrogate: 4-Bromofluorobenzene  | 52.1   | μ <b>g/</b> l   | 50.0           |                  | 104                                   | 70-130         |      |              |       |
| Surrogate: Toluene-d8            | 49.4   | μg/l            | 50.0           |                  | 98.8                                  | 70-130         |      |              |       |
| Surrogate: 1,2-Dichloroethane-d4 | 53.4   | μg/l            | 50.0           |                  | 107                                   | 70-130         |      |              |       |
| Surrogate: Dibromofluoromethane  | 51.4   | μg/l            | 50.0           |                  | 103                                   | 70-130         |      |              |       |
| Matrix Spike Dup (5080723-MSD1)  | Sou    | rce: SA31851-09 | Prepared       | & Analyz         | ed: 10-Au                             | g-05           |      |              |       |
| Benzene                          | 26.3   | μg/l            | 20.0           | BRL              | 132                                   | 70-130         | 21.8 | 30           | QM-07 |
| Chlorobenzene                    | 22.5   | μg/l            | 20.0           | BRL              | 112                                   | 70-130         | 0.00 | 30           |       |
| 1,1-Dichloroethene               | 19.7   | μg/l            | 20.0           | BRL              | 98.5                                  | 70-130         | 4.47 | 30           |       |
| Toluene                          | 28.1   | μg/l            | 20.0           | 7.60             | 102                                   | 70-130         | 1.94 | 30           |       |
| Trichloroethene                  | 21.1   | μg/l            | 20.0           | BRL              | 106                                   | 70-130         | 0.00 | 30           |       |
| Surrogate: 4-Bromofluorobenzene  | 52.6   | μg/l            | 50.0           |                  | 105                                   | 70-130         |      |              |       |
| Surrogate: Toluene-d8            | 50.0   | μg/l            | 50.0           |                  | 100                                   | 70-130         |      |              |       |
| Surrogate: 1,2-Dichloroethane-d4 | 53.7   | μg/l            | 50.0           |                  | 107                                   | 70-130         |      |              |       |
| Surrogate: Dibromofluoromethane  | 51.7   | μg/l            | 50.0           |                  | 103                                   | 70-130         |      |              |       |
|                                  |        |                 |                |                  |                                       |                |      |              |       |

# **Extractable Petroleum Hydrocarbons - Quality Control**

| Analyte(s)                    | Result | *RDL Units      | Spike<br>Level                          | Source<br>Result | %REC       | %REC<br>Limits | RPD         | RPD<br>Limit | Flag  |
|-------------------------------|--------|-----------------|-----------------------------------------|------------------|------------|----------------|-------------|--------------|-------|
| Analyte(s)                    | Kesuit | - KDL UIIIS     | Level                                   | Resuit           | /OKEC      | Lillits        | KLD.        | Lillit       | 1 lag |
| Batch 5080507 - SW846 3535    |        |                 |                                         |                  |            |                |             |              |       |
| Blank (5080507-BLK1)          |        |                 | Prepared:                               | 08-Aug-0         | 5 Analyze  | ed: 09-Aug     | <u>;-05</u> |              |       |
| Fuel Oil #2                   | BRL    | 0.1 mg/l        |                                         |                  |            |                |             |              |       |
| Fuel Oil #4                   | BRL    | 0.1 mg/l        |                                         |                  |            |                |             |              |       |
| Fuel Oil #6                   | BRL    | 0.1 mg/l        |                                         |                  |            |                |             |              |       |
| Motor Oil                     | BRL    | 0.1 mg/l        |                                         |                  |            |                |             |              |       |
| Aviation Fuel                 | BRL    | 0.1 mg/l        |                                         |                  |            |                |             |              |       |
| Unidentified                  | BRL    | 0.1 mg/l        |                                         |                  |            |                |             |              |       |
| Other Oil                     | BRL    | 0.1 mg/l        |                                         |                  |            |                |             |              |       |
| Diesel Range Organics (DRO)   | BRL    | 0.1 mg/l        |                                         |                  |            |                |             |              |       |
| Surrogate: 1-Chlorooctadecane | 0.0224 | mg/l            | 0.0500                                  |                  | 44.8       | 40-140         |             |              |       |
| LCS (5080507-BS1)             |        |                 | Prepared:                               | 08-Aug-0         | 5 Analyze  | ed: 09-Aug     | g-05        |              |       |
| Fuel Oil #2                   | 10.1   | 0.1 mg/l        | 10.0                                    |                  | 101        | 40-140         |             |              |       |
| Surrogate: 1-Chlorooctadecane | 0.104  | mg/l            | 0.0500                                  |                  | 208        | 40-140         |             |              | S-02  |
| Batch 5080701 - SW846 3550B   |        |                 |                                         |                  |            |                |             |              |       |
| Blank (5080701-BLK1)          |        |                 | Prepared: 10-Aug-05 Analyzed: 11-Aug-05 |                  |            |                |             |              |       |
| Gasoline                      | BRL    | 133 mg/kg       |                                         |                  |            |                |             |              |       |
| Fuel Oil #2                   | BRL    | 133 mg/kg       |                                         |                  |            |                |             |              |       |
| Fuel Oil #4                   | BRL    | 133 mg/kg       |                                         |                  |            |                |             |              |       |
| Fuel Oil #6                   | BRL    | 133 mg/kg       |                                         |                  |            |                |             |              |       |
| Motor Oil                     | BRL    | 133 mg/kg       |                                         |                  |            |                |             |              |       |
| Ligroin                       | BRL    | 133 mg/kg       |                                         |                  |            |                |             |              |       |
| Aviation Fuel                 | BRL    | 133 mg/kg       |                                         |                  |            |                |             |              |       |
| Unidentified                  | BRL    | 133 mg/kg       |                                         |                  |            |                |             |              |       |
| Other Oil                     | BRL    | 133 mg/kg       |                                         |                  |            |                |             |              |       |
| Total Petroleum Hydrocarbons  | BRL    | 133 mg/kg       |                                         |                  |            |                |             |              |       |
| Surrogate: 1-Chlorooctadecane | 2.48   | mg/kg           | 3.33                                    |                  | 74.5       | 40-140         |             |              |       |
| LCS (5080701-BS1)             |        |                 | Prepared:                               | 10-Aug-0         | 5 Analyze  | ed: 11-Aug     | g-05        |              |       |
| Fuel Oil #2                   | 831    | 13.3 mg/kg      | 667                                     |                  | 125        | 40-140         |             |              |       |
| Duplicate (5080701-DUP1)      | Sou    | rce: SA31998-06 | Prepared:                               | 10-Aug-0         | )5 Analyze | ed: 11-Aug     | g-05        |              |       |
| Gasoline                      | BRL    | 3700 mg/kg      |                                         | BRL              |            |                |             | 50           |       |
| Fuel Oil #2                   | 189000 | 3700 mg/kg      |                                         | 201000           |            |                | 6.15        | 50           |       |
| Fuel Oil #4                   | BRL    | 3700 mg/kg      |                                         | BRL              |            |                |             | 50           |       |
| Fuel Oil #6                   | BRL    | 3700 mg/kg      |                                         | BRL              |            |                |             | 50           |       |
| Motor Oil                     | BRL    | 3700 mg/kg      |                                         | BRL              |            |                |             | 50           |       |
| Ligroin                       | BRL    | 3700 mg/kg      |                                         | BRL              |            |                |             | 50           |       |
| Aviation Fuel                 | BRL    | 3700 mg/kg      |                                         | BRL              |            |                |             | 50           |       |
| Unidentified                  | BRL    | 3700 mg/kg      |                                         | BRL              |            |                |             | 50           |       |
| Other Oil                     | BRL    | 3700 mg/kg      |                                         | BRL              |            |                |             | 50           |       |
| Total Petroleum Hydrocarbons  | 189000 | 3700 mg/kg      |                                         | 201000           |            |                | 6.15        | 50           |       |
| Surrogate: 1-Chlorooctadecane | 576    | mg/kg           | 92.7                                    |                  | 621        | 40-140         |             |              | S-0   |

### **Notes and Definitions**

\*TPH Calculated as

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable

LCS recovery.

S-02 The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic

compounds present in the sample extract

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC

### Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc.

Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel

Fuel Oil #4 - includes #4 fuel oil

Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil

Motor Oil - includes virgin and waste automobile oil

Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha

Aviation Fuel - includes kerosene, Jet A and JP-4

Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as \*TPH (Calculated as).

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analytés). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix

Method Blank: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction Sample RDLs are highly matrix-dependent.

Surrogate: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples These compounds are spiked into all blanks, standards, and

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Brown



# CHAIN OF CUSTODY RECORD

379 31998 pm

| andard TAT - 7 to 10 business days | Special Handling: |
|------------------------------------|-------------------|
|------------------------------------|-------------------|

|                 | X                |
|-----------------|------------------|
| Rush TAT - Date | Standard TAT -   |
| Date Needed:    | 7 to 10 business |

- All TATs subject to laboratory approval.

  Min. 24-hour notification needed for rushes.

| unless otherwise instructed | · All samples are disposed of after 60 da |
|-----------------------------|-------------------------------------------|
|                             | ia                                        |

| Analyses: Notes:                                                       | cid Containers:       | I 6=Ascorbic A | 1=Na <sub>2</sub> S2O <sub>3</sub> 2=HCl 3=H <sub>2</sub> SO <sub>4</sub> 4=HNO <sub>3</sub> 5=NaOH 6=Ascorbic Acid<br>7=CH <sub>3</sub> OH 8= NaHSO <sub>4</sub> 9= 10= |
|------------------------------------------------------------------------|-----------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampler(s): \$. PARAMAN > M. QUERIJO                                   | RQN: PCF              | P.O. No.:      | Project Mgr.: PON Multiple                                                                                                                                               |
| Location: ST. JOHNSBURY State: M                                       | WASOI OKON            | こまかっ           | CITIVEN VI EST                                                                                                                                                           |
| Site Name: NORTHODAN PETROLEUM                                         | 15 Jan 15 885 - 11 15 | 1              | PSMANES ST, ISMX & 301                                                                                                                                                   |
| Project No.: 108-204262                                                | •                     | Invoice To:    | Report To: ECS                                                                                                                                                           |
| All samples are disposed of after 60 days unless otherwise instructed. | Page of 2             |                | HANIBAL TECHNOLOGY                                                                                                                                                       |
|                                                                        |                       |                | Ecotomic                                                                                                                                                                 |

| Date:    Date:                                               |                                       |
|--------------------------------------------------------------|---------------------------------------|
| 1450<br>1450<br>1450<br>1450<br>1450<br>1450<br>1450<br>1450 | WW=Wastewater  =Sludge A=Air  X3=     |
| Type                                                         |                                       |
| Matrix                                                       |                                       |
| Preserva                                                     | ative                                 |
| guitter hand to f vo                                         |                                       |
|                                                              | ber Glass On                          |
| # of Clea                                                    | n                                     |
| # OI Flas                                                    |                                       |
| 1 → × 1 → × 80218 V                                          | TSIAN                                 |
| T7/1                                                         | NA                                    |
| BH-X XXX 80151                                               | 3 DRO                                 |
| Received by 8100                                             | Analyses:                             |
| & by                                                         | 'ses:                                 |
|                                                              |                                       |
| A                                                            |                                       |
|                                                              |                                       |
| Date                                                         |                                       |
|                                                              | Ž                                     |
|                                                              | Notes:                                |
| 7 Time: 1830                                                 | i yara<br>Maranga<br>Maranga          |
|                                                              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |



Report To:

65 M. WET ST, SUITE 301 LEHSO IN GUARMANIA

Invoice To: ECS 7

Page 2

of 7

20202

HANIBAL TECHNOLOGY

Featuring

# CHAIN OF CUSTODY RECORD

Special Handling: days

|                | A              |   |
|----------------|----------------|---|
| Ŗ              | \$             |   |
| Rush           | ano            |   |
| $\Box$         | lar            |   |
| TAT-           | T p            |   |
| _              | Standard TAT - | • |
| at             |                |   |
| e              | 7 t            |   |
| ee             | to 1           |   |
| - Date Needed: | 10             |   |
|                | 10 business    |   |
|                | ine            | ( |
| l              | SS             |   |

- Min. 24-hour notification needed for rushes. All TATs subject to laboratory approval.
- All samples are disposed of after 60 days unless otherwise instructed.

Project No.: 08-204262

| Sampler(s):                         | Location:               | Site Name:                    |
|-------------------------------------|-------------------------|-------------------------------|
| Sampler(s): B. BACHMAN & M. GUERING | Location: ST. JoHNSBUEY | Site Name: NATITERN PETROLEUM |
| M. GUERINO                          | State: VT               | ETROILUM                      |

| Project Mgr.: Pon Muse?                                                                                                                                  |                                              | P.O. No.:                         | ю.:<br> |                |              |                  | RQN:          |             | 45           |         | Sam    | Sampler(s):    |              | 6.5      | かつさ | 3. BACHMAN | \$ | 4. GUERING | 472    |       |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------|---------|----------------|--------------|------------------|---------------|-------------|--------------|---------|--------|----------------|--------------|----------|-----|------------|----|------------|--------|-------|-------------|
| 1=Na <sub>2</sub> S2O <sub>3</sub> 2=HCl 3=H <sub>2</sub> SO <sub>4</sub> 4=HNO <sub>3</sub> 5=NaOH<br>7=CH <sub>3</sub> OH 8= NaHSO <sub>4</sub> 9= 10= | 4=HNO <sub>3</sub> 5=1                       | VaOH 6=Ascorbic Acid              | orbic / | cid            |              |                  | Con           | Containers: | rs:          |         |        |                | Analyses:    | ses:     |     |            |    |            | Notes: |       |             |
| DW=Drinking Water GW=Gr<br>O=Oil SW= Surface Water<br>X1= すれらかにて X2=                                                                                     | GW=Groundwater WW Water SO=Soil SL=Sh 2= X3= | WW=Wastewater SL=Sludge A=Air X3= |         |                | ve           |                  |               |             |              | TSLAN   | DUD    | <del>2</del> 6 |              |          | -   |            |    |            |        |       |             |
| G=Grab C=Lab Id: Sample Id:                                                                                                                              | C=Composite Date:                            | Time:                             | Туре    | Matrix         | Preservati   | # of VOA         | # of Ambe     | # of Clear  | # of Plastic | 30Z1B V | TPH DR | 3015BP         | 8100         |          |     |            |    |            |        |       |             |
|                                                                                                                                                          |                                              |                                   | 1       | •              |              | +                | +             | +           | +            | :   8   | ŀ      | 18             | -            |          | -   | 1          | -  |            |        |       |             |
| ACCOLL MINTIO                                                                                                                                            | 7/29/05                                      | 1310                              | ZJ      | and and        | 12           | 7                |               |             |              | ~       |        | ×              |              |          |     |            | _  |            |        |       |             |
| AC 10 MU-T                                                                                                                                               |                                              | 天                                 | -       | ×.             |              | _                |               |             |              |         |        |                | ×            |          |     |            |    |            |        |       |             |
| AC 1/3 MW-18                                                                                                                                             |                                              | (335                              | _       | ON CO          | 1            | 2                | _             |             |              | メ       |        | ×              |              |          |     |            |    |            |        |       |             |
| Ad 14 MHJ-19                                                                                                                                             |                                              | 1255                              |         | ×1             |              | -                |               |             |              |         |        |                | *            |          |     |            |    |            |        |       |             |
| at 15 MW-22                                                                                                                                              |                                              | 1345                              | -       | 20<br>20<br>20 | 2            | 2                |               |             |              | ×       |        | ×              |              |          |     |            |    |            |        |       |             |
| Ac / le DUPULCATE                                                                                                                                        |                                              | 1320                              | 0       |                | <u> </u>     |                  | ٠,            |             |              | _       |        | <u> </u>       | ļ <u>.</u>   |          |     |            |    |            |        |       |             |
| Ac /7 MW-2                                                                                                                                               |                                              | 1200                              |         |                |              |                  | -             |             |              |         |        |                |              |          |     |            |    |            |        | ļ     |             |
| AC / B MW/DI                                                                                                                                             |                                              | 1450                              |         |                |              |                  |               |             |              |         |        |                |              |          |     |            |    |            |        |       |             |
| L-19 MW-IR                                                                                                                                               | ۲                                            | 1440                              | -       | }—             | <del>-</del> | 1-               | -             |             |              | _       |        | \ <u></u>      |              | <u> </u> |     |            |    |            |        |       |             |
| AC                                                                                                                                                       |                                              |                                   |         |                |              |                  | <u> </u>      |             |              |         |        |                |              |          |     |            |    |            |        |       |             |
|                                                                                                                                                          |                                              |                                   |         |                | Reli         | Relinquished by: | $\sqrt{g}$    | y:          |              |         |        | 2              | Received by: | d by:    |     |            | (  | Date:      | }      | Time: | ne:         |
| -                                                                                                                                                        |                                              |                                   | T       | 12 m           | 1            | 3                |               |             | 4            |         |        |                |              |          |     |            |    | 16/1/97    |        | ,000  |             |
| ☐ Fax results when available to (_                                                                                                                       |                                              |                                   | 7       | •              | ٠            | 2                | \<br><b>\</b> | i           | <u></u>      |         |        |                | _            |          |     |            | 0  | \ <u>'</u> | 7      | '//   | <u>&gt;</u> |

Condition upon Receipt: Ticed

□ Ambient □ 3°C

E E-mail results when available to regular a escarsult.

Report Date: 07-Nov-05 09:50





☐ Revised Report

# SPECTRUM ANALYTICAL, INC.

## Featuring HANIBAL TECHNOLOGY

# Laboratory Report

**Environmental Compliance Services** 65 Millet Street; Suite 301

Richmond, VT 05477 Attn: Kimberle Lockard Project: Northern Petroleum-St Johnsbury, VT

Project #: 08-204262.00

| <b>Laboratory ID</b> | Client Sample ID | <u>Matrix</u>  | Date Sampled    | Date Received   |
|----------------------|------------------|----------------|-----------------|-----------------|
| SA36288-01           | Trip             | Ground Water   | 19-Oct-05 08:30 | 25-Oct-05 09:10 |
| SA36288-02           | MW-29            | Ground Water   | 19-Oct-05 12:05 | 25-Oct-05 09:10 |
| SA36288-03           | MW-30            | Ground Water   | 19-Oct-05 12:15 | 25-Oct-05 09:10 |
| SA36288-04           | Duplicate        | Ground Water   | 19-Oct-05 12:20 | 25-Oct-05 09:10 |
| SA36288-05           | MW-32            | Ground Water   | 19-Oct-05 12:15 | 25-Oct-05 09:10 |
| SA36288-06           | MW-27            | . Ground Water | 19-Oct-05 13:50 | 25-Oct-05 09:10 |
| SA36288-07           | MW-26            | Ground Water   | 19-Oct-05 13:35 | 25-Oct-05 09:10 |
| SA36288-09           | MW-31            | Ground Water   | 19-Oct-05 12:25 | 25-Oct-05 09:10 |
| SA36288-10           | MW-28            | Oil            | 19-Oct-05 13:20 | 25-Oct-05 09:10 |

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. All applicable NELAC requirements have been met.

Please note that this report contains 16 pages of analytical data plus Chain of Custody document(s).

This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Massachusetts Certification # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538/2972 New York # 11393/11840 Rhode Island # 98 USDA # S-51435 Vermont # VT-11393



hiba//C. Tayeh, Ph.D. President/Laboratory Director

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method indicated. Please refer to our "Quality" webpage at www.spectrum-analytical.com for a full listing of our current certifications.



Matrix Ground Water Collection Date/Time 19-Oct-05 08:30

| CAS No.            | Analyte(s)              | Result       | *RDL/Units      | Dilution | Method Ref. | Prepared  | Analyzed  | Batch   | Analyst Flag |
|--------------------|-------------------------|--------------|-----------------|----------|-------------|-----------|-----------|---------|--------------|
| Volatile           | Organic Compounds       |              |                 |          |             |           |           | ,       |              |
| <u>Volatile</u>    | Organic Compounds by 82 | <u> 160B</u> | Prepared by met | hod Vola | tiles       |           |           |         |              |
| 71-43-2            | Benzene                 | BRL          | 1.0 µg/l        | 1        | SW846 8260B | 31-Oct-05 | 01-Nov-05 | 5101883 | krl          |
| 100-41-4           | Ethylbenzene            | BRL          | 1.0 µg/l        | 1        | "           | "         | U         | 11      | 11           |
| 1634-04-4          | Methyl tert-butyl ether | BRL          | 1.0 µg/l        | 1        | "           | "         | u         | 11      | 19           |
| 91-20-3            | Naphthalene             | BRL          | 5.0 μg/l        | 1        | 4           | u         | n         | n       | U            |
| 108-88-3           | Toluene                 | BRL          | 1.0 µg/l        | 1        | "           | "         | #         | Ħ       | n            |
| 95-63-6            | 1,2,4-Trimethylbenzene  | BRL          | 1.0 µg/l        | 1        | н           | **        | н         | H       | ti           |
| 108-67-8           | 1,3,5-Trimethylbenzene  | BRL          | 1.0 µg/l        | 1        | "           | н         | "         | **      | H            |
| 1330-20-7          | m,p-Xylene              | BRL          | 2.0 µg/l        | 1        | н           | H         | "         | 11      | If           |
| 95-47-6            | o-Xylene                | BRL          | 1.0 µg/l        | 1        | Ħ           | н         | II .      | 11      |              |
| Surrogate          | e recoveries:           |              |                 |          |             |           |           |         |              |
| 460-00-4           | 4-Bromofluorobenzene    | 95.0         | 70-130 %        |          | 11          | **        | 11        | 0       | "            |
| 2037-26-5          | Toluene-d8              | 95.7         | 70-130 %        |          | U           | n,        | #1        | **      | "            |
| 17060-07-0         | 1,2-Dichloroethane-d4   | 108          | 70-130 %        |          | u           | "         | 11        | "       | U            |
| 1868-53 <b>-</b> 7 | Dibromofluoromethane    | 110          | 70-130 %        |          | "           | ıı        | 11        | #       | ts .         |

Matrix Ground Water Collection Date/Time 19-Oct-05 12:05

| CAS No.         | Analyte(s)                  | Result   | *RDL/Units      | Dilution | Method Ref.         | Prepared  | Analyzed  | Batch   | Analyst | Flag |
|-----------------|-----------------------------|----------|-----------------|----------|---------------------|-----------|-----------|---------|---------|------|
| Volatile        | Organic Compounds           |          |                 |          |                     | _         |           |         |         |      |
| <u>Volatile</u> | Organic Compounds by 8260.  | <u>B</u> | Prepared by met | hod Vola | tiles               |           |           |         |         |      |
| 71-43-2         | Benzene                     | BRL      | 1.0 µg/l        | 1        | SW846 8260B         | 31-Oct-05 | 01-Nov-05 | 5101883 | krl     |      |
| 100-41-4        | Ethylbenzene                | BRL      | 1.0 µg/l        | 1        | 11                  | 11        | **        | ŧı      | **      |      |
| 1634-04-4       | Methyl tert-butyl ether     | BRL      | 1.0 µg/l        | 1        | 11                  | Ħ         | 11        | u       | u       |      |
| 91-20-3         | Naphthalene                 | BRL      | 5.0 μg/l        | 1        | 11                  | #         | H         | tt      | n       |      |
| 108-88-3        | Toluene                     | BRL      | 1.0 µg/l        | 1        | "                   | **        | 11        | **      | **      |      |
| 95-63-6         | 1,2,4-Trimethylbenzene      | BRL      | 1.0 µg/l        | 1        | II.                 | 11        | 19        | *1      | "       |      |
| 108-67-8        | 1,3,5-Trimethylbenzene      | BRL      | 1.0 µg/l        | 1        | 11                  | H         | 10        | 11      | 11      |      |
| 1330-20-7       | m,p-Xylene                  | BRL      | 2.0 µg/l        | 1        | 11                  | 11        | 19        | 19      | н       |      |
| 95-47-6         | o-Xylene                    | BRL      | 1.0 µg/l        | 1        | U                   | 11        | u         | n       | "       |      |
| Surrogate       | recoveries:                 |          |                 |          |                     |           |           |         |         |      |
| 460-00-4        | 4-Bromofluorobenzene        | 93.7     | 70-130 %        |          | 0                   | n         | ti.       | н       | 11      |      |
| 2037-26-5       | Toluene-d8                  | 111      | 70-130 %        |          | U                   | 11        | **        | n       | ii      |      |
| 17060-07-0      | 1,2-Dichloroethane-d4       | 106      | 70-130 %        |          | u                   | 11        | **        | н       | n       |      |
| 1868-53-7       | Dibromofluoromethane        | 108      | 70-130 %        |          | †I                  | n         | 11        | 11      | n       |      |
| Extracta        | able Petroleum Hydrocarboi  | 18       |                 |          |                     |           |           |         |         |      |
|                 | ange Organics               |          | Prepared by met | hod SW8  | 46 3535             |           |           |         |         |      |
| 68476-30-2      | Fuel Oil #2                 | BRL      | 0.2 mg/l        | 1        | 8015BM/ME4.1<br>.25 | 31-Oct-05 | 01-Nov-05 | 5101846 | LK      |      |
| 68476-31-3      | Fuel Oil #4                 | BRL      | 0.2 mg/l        | 1        | **                  | 11        | **        | 11      | **      |      |
| 68553-00-4      | Fuel Oil #6                 | BRL      | 0.2 mg/l        | 1        | n                   | 11        | "         | **      | **      |      |
| M09800000       | Motor Oil                   | BRL      | 0.2 mg/l        | 1        | "                   | U         | **        | **      | "       |      |
| J00100000       | Aviation Fuel               | BRL      | 0.2 mg/l        | 1        | II                  | U         | н         | н       |         |      |
|                 | Unidentified                | BRL      | 0.2 mg/l        | 1        | n                   | *1        | n         | *       | n       |      |
|                 | Other Oil                   | BRL      | 0.2 mg/l        | 1        | II                  | **        | 11        | 11      | II.     |      |
|                 | Diesel Range Organics (DRO) | BRL      | 0.2 mg/l        | 1        | U                   | H         | "         | "       | (1      |      |
| Surrogate       | recoveries:                 |          |                 |          |                     |           |           |         |         |      |
| 3386-33-2       | 1-Chlorooctadecane          | 72.1     | 40-140 %        |          | 11                  | n         | If        | 18      | 11      |      |
|                 |                             |          |                 |          |                     |           |           |         |         |      |

Sample Identification MW-30 SA36288-03

Client Project # 08-204262.00

Matrix Ground Water Collection Date/Time 19-Oct-05 12:15

| CAS No.    | Analyte(s)                  | Result        | *RDL/Units        | Dilution | Method Ref.  | Prepared  | Analyzed  | Batch   | Analyst | Flag |
|------------|-----------------------------|---------------|-------------------|----------|--------------|-----------|-----------|---------|---------|------|
| Volatile   | Organic Compounds           |               |                   |          |              |           |           |         |         |      |
| Volatile ( | Organic Compounds by 8260   | <u>B</u>      | Prepared by metho | d Vola   | tiles        |           |           |         |         |      |
| 71-43-2    | Benzene                     | BRL           | 1.0 µg/l          | l        | SW846 8260B  | 01-Nov-05 | 01-Nov-05 | 5110026 | KS      |      |
| 100-41-4   | Ethylbenzene                | BRL           | 1.0 µg/l          | 1        | It           | Ħ         | If        | 11      | #1      |      |
| 1634-04-4  | Methyl tert-butyl ether     | BRL           | 1.0 μg/l          | 1        | 11           | **        | 11        | *1      | 11      |      |
| 91-20-3    | Naphthalene                 | 2.2           | 1.0 µg/l          | 1        | H            | 11        | It        | 11      | ft      |      |
| 108-88-3   | Toluene                     | BRL           | 1.0 µg/l          | 1        | H            | 11        | 11        | 11      | 11      |      |
| 95-63-6    | 1,2,4-Trimethylbenzene      | 2.0           | 1.0 µg/l          | 1        | n            | 11        | n         | 11      | 19      |      |
| 108-67-8   | 1,3,5-Trimethylbenzene      | 1.1           | 1.0 μg/l          | 1        | **           | Ħ         | 19        | н       | 19      |      |
| 1330-20-7  | m,p-Xylene                  | BRL           | 2.0 μg/l          | 1        | n            | 11        | 11        | H       | 10      |      |
| 95-47-6    | o-Xylene                    | BRL           | 1.0 µg/l          | 1        | If           | 11        | H         | Iŧ      | 11      |      |
| Surrogate  | recoveries:                 |               |                   |          |              |           |           |         |         |      |
| 460-00-4   | 4-Bromofluorobenzene        | 99.0          | 70-130 %          |          | H            | н         | "         | 11      | 0       |      |
| 2037-26-5  | Toluene-d8                  | 101           | 70-130 %          |          | 11           | 11        | 11        | 11      | u       |      |
| 17060-07-0 | 1,2-Dichloroethane-d4       | 96.3          | 70-130 %          |          | 11           | "         | H         | U       | n       |      |
| 1868-53-7  | Dibromofluoromethane        | 103           | 70-130 %          |          | n            | 11        | n         | U       | "       |      |
| Extracta   | ible Petroleum Hydrocarboi  | ıs            |                   |          |              |           |           |         |         |      |
| Diesel Ro  | ange Organics               |               | Prepared by metho | d SW8    | 46 3535      |           |           |         |         |      |
| 68476-30-2 | Fuel Oil #2                 | Calculated as | 0.2 mg/l          | 1        | 8015BM/ME4.1 | 31-Oct-05 | 01-Nov-05 | 5101846 | LK      |      |
| 68476-31-3 | Fuel Oil #4                 | BRL           | 0.2 mg/l          | 1        | 11           | **        | 0         | "       | **      |      |
| 68553-00-4 | Fuel Oil #6                 | BRL           | 0.2 mg/l          | 1        | "            | n         | **        | "       | 11      |      |
| M09800000  | Motor Oil                   | BRL           | 0.2 mg/l          | 1        | H            | n         | **        | **      | "       |      |
| J00100000  | Aviation Fuel               | BRL           | 0.2 mg/l          | 1        | u            | Ħ         | 11        | #1      | **      |      |
|            | Unidentified                | 4.7           | 0.2 mg/l          | 1        | п            | **        | "         | н       | "       |      |
|            | Other Oil                   | BRL           | 0.2 mg/l          | 1        | "            | **        | "         | **      | "       |      |
|            | Diesel Range Organics (DRO) | 4.7           | 0.2 mg/l          | 1        | 11           | ft        | "         | 11      | n       |      |
| Surrogate  | recoveries:                 |               |                   |          |              |           |           |         |         |      |
| 3386-33-2  | 1-Chlorooctadecane          | 125           | 40-140 %          |          | u            | 41        | U         | u       | ŧı      |      |

Matrix Ground Water Collection Date/Time 19-Oct-05 12:20

| CAS No.    | Analyte(s)                  | Result        | *RDL/Units     | Dilution  | Method Ref.  | Prepared  | Analyzed  | Batch   | Analyst | Flag |
|------------|-----------------------------|---------------|----------------|-----------|--------------|-----------|-----------|---------|---------|------|
| Volatile   | Organic Compounds           |               |                |           |              |           |           |         |         |      |
| Volatile   | Organic Compounds by 8260   | <u>B</u>      | Prepared by me | thod Vola | tiles        |           |           |         |         |      |
| 71-43-2    | Benzene                     | BRL           | 1.0 µg/l       | 1         | SW846 8260B  | 01-Nov-05 | 01-Nov-05 | 5110026 | KS      |      |
| 100-41-4   | Ethylbenzene                | BRL           | 1.0 µg/l       | 1         | н            | 11        | 11        | 11      | It      |      |
| 1634-04-4  | Methyl tert-butyl ether     | BRL           | 1.0 µg/l       | 1         | 19           | 11        | n         | H       | n       |      |
| 91-20-3    | Naphthalene                 | 1.8           | 1.0 µg/l       | 1         | 11           | 11        | 17        | H       | 17      |      |
| 108-88-3   | Toluene                     | BRL           | 1.0 µg/l       | 1         | u            | 11        | 0         | "       | H       |      |
| 95-63-6    | 1,2,4-Trimethylbenzene      | 2.0           | 1.0 µg/l       | 1         | 11           | H         | II.       | 11      | 19      |      |
| 108-67-8   | 1,3,5-Trimethylbenzene      | 1.1           | 1.0 µg/l       | 1         | H            | 11        | n         | ıı      | U       |      |
| 1330-20-7  | m,p-Xylene                  | BRL           | 2.0 μg/l       | 1         | 11           | 11        | IJ        | 11      | n       |      |
| 95-47-6    | o-Xylene                    | BRL           | 1.0 µg/l       | 1         | II           | 11        | U         | n       | U       |      |
| Surrogate  | recoveries:                 |               |                | 3111      |              |           |           | ,       |         |      |
| 460-00-4   | 4-Bromofluorobenzene        | 100           | 70-130 %       |           | It           | *1        | 11        | n       | "       |      |
| 2037-26-5  | Toluene-d8                  | 107           | 70-130 %       |           | 11           | "         | 11        | Ħ       | "       |      |
| 17060-07-0 | 1,2-Dichloroethane-d4       | 99.3          | 70-130 %       |           | It           | **        | n         | u       | "       |      |
| 1868-53-7  | Dibromofluoromethane        | 105           | 70-130 %       |           | 11           | 11        | u         | ti      | 11      |      |
| Extracta   | ible Petroleum Hydrocarboi  | ns            |                |           |              |           |           |         |         |      |
| Diesel R   | ange Organics               |               | Prepared by me | thod SW8  | 46 3535      |           |           |         |         |      |
| 68476-30-2 | Fuel Oil #2                 | Calculated as | 0.2 mg/l       | 1         | 8015BM/ME4.1 | 31-Oct-05 | 01-Nov-05 | 5101846 | LK      |      |
| 68476-31-3 | Fuel Oil #4                 | BRL           | 0.2 mg/l       | 1         | H            | 11        | n         | н       | "       |      |
| 68553-00-4 | Fuel Oil #6                 | BRL           | 0.2 mg/l       | 1         | Ħ            | U         | **        | "       | "       |      |
| M09800000  | Motor Oil                   | BRL           | 0.2 mg/l       | 1         | и .          | ti        | "         | n       | u       |      |
| J00100000  | Aviation Fuel               | BRL           | 0.2 mg/l       | 1         | 11           | **        | n         | "       | 11      |      |
|            | Unidentified                | 4.9           | 0.2 mg/l       | 1         | И            | **        | n         | n       | 0       |      |
|            | Other Oil                   | BRL           | 0.2 mg/l       | 1         | 11           | 11        | n         | u       | **      |      |
|            | Diesel Range Organics (DRO) | 4.9           | 0.2 mg/l       | 1         | **           | H         | 11        | "       | "       |      |
| Surrogate  | recoveries:                 |               |                |           |              |           |           |         |         |      |
| 3386-33-2  | 1-Chlorooctadecane          | 135           | 40-140 %       |           | 11           | u         | 11        | 11      | O       |      |
|            |                             |               |                |           |              |           |           |         |         |      |

Matrix Ground Water Collection Date/Time 19-Oct-05 12:15

| CAS No.   | Analyte(s)                  | Result   | *RDL/Units          | Dilution | Method Ref.         | Prepared  | Analyzed  | Batch   | Analyst | Fla |
|-----------|-----------------------------|----------|---------------------|----------|---------------------|-----------|-----------|---------|---------|-----|
| Volatile  | Organic Compounds           |          |                     |          |                     |           |           |         |         |     |
| Volatile  | Organic Compounds by 8260.  | <u>B</u> | Prepared by metho   | d Vola   | tiles               |           |           |         |         |     |
| 1-43-2    | Benzene                     | BRL      | 1.0 μg/l            | 1        | SW846 8260B         | 31-Oct-05 | 01-Nov-05 | 5101883 | krl     |     |
| 00-41-4   | Ethylbenzene                | BRL      | 1.0 µg/l            | 1        | H                   | n         | U         | 11      | "       |     |
| 634-04-4  | Methyl tert-butyl ether     | BRL      | 1.0 µg/l            | 1        | п                   | "         | u         | n       | 0       |     |
| 1-20-3    | Naphthalene                 | BRL      | 5.0 μg/l            | 1        | Ħ                   | 0         | "         | ti      | *1      |     |
| 08-88-3   | Toluene                     | BRL      | 1.0 µg/l            | 1        | u                   | H         | n         | 11      | 11      |     |
| 5-63-6    | 1,2,4-Trimethylbenzene      | BRL      | 1.0 μg/l            | 1        | "                   | H         | n         | ti      | 11      |     |
| 08-67-8   | 1,3,5-Trimethylbenzene      | BRL      | 1.0 µg/l            | 1        | 11                  | 11        | n         | *1      | 17      |     |
| 330-20-7  | m,p-Xylene                  | BRL      | 2.0 μg/l            | 1        | n                   | 11        | n         | *1      | U       |     |
| 5-47-6    | o-Xylene                    | BRL      | 1.0 µg/l            | 1        | ii .                | н         | "         | H       | 0       |     |
| Surrogate | recoveries:                 |          |                     |          |                     |           |           |         |         |     |
| 60-00-4   | 4-Bromofluorobenzene        | 91.3     | 70-130 %            |          | н                   | "         | "         | п       | 11      |     |
| 037-26-5  | Toluene-d8                  | 90.7     | 70-130 %            |          | н                   | n         | "         | "       | "       |     |
| 7060-07-0 | 1,2-Dichloroethane-d4       | 110      | 70-130 %            |          | "                   | 11        | u         | "       | 0       |     |
| 868-53-7  | Dibromofluoromethane        | 108      | 70-130 %            |          | H                   | n         | "         | 11      | 0       |     |
| Extracta  | ıble Petroleum Hydrocarboi  | ns       |                     |          |                     |           |           |         |         |     |
| Diesel R  | ange Organics               |          | Prepared by metho   | d SW8    | 46 3535             |           |           |         |         |     |
| 8476-30-2 | Fuel Oil #2                 | BRL      | 0.2 mg/l            | 1        | 8015BM/ME4.1<br>.25 | 31-Oct-05 | 01-Nov-05 | 5101846 | LK      |     |
| 8476-31-3 | Fuel Oil #4                 | BRL      | 0.2 mg/l            | 1        | u.                  | "         | u         | 11      | H       |     |
| 8553-00-4 | Fuel Oil #6                 | BRL      | 0.2 mg/l            | 1        | п                   | 11        | n         | **      | 11      |     |
| M09800000 | Motor Oil                   | BRL      | 0.2 mg/l            | 1        | n                   | 19        | п         | u       | **      |     |
| 00100000  | Aviation Fuel               | BRL      | 0.2 mg/l            | 1        | u                   | 11        | **        | ti      | #       |     |
|           | Unidentified                | BRL      | 0.2 mg/l            | 1        | 11                  | 11        | "         | "       | "       |     |
|           | Other Oil                   | BRL      | 0.2 mg/l            | 1        | 11                  | n         | 11        | **      | If      |     |
|           | Diesel Range Organics (DRO) | BRL      | 0.2 mg/l            | 1        | n                   | n         | н         | н       | "       |     |
| Surrogate | recoveries:                 |          | AMAL 700 PROFESSION |          |                     |           |           |         |         |     |
| 386-33-2  | 1-Chlorooctadecane          | 81.1     | 40-140 %            |          | 0                   | 11        | e         | n       | 11      |     |

Matrix Ground Water Collection Date/Time 19-Oct-05 13:50

| CAS No.    | Analyte(s)                  | Result   | *RDL/Units        | Dilution | Method Ref.         | Prepared  | Analyzed  | Batch   | Analyst | Fla |
|------------|-----------------------------|----------|-------------------|----------|---------------------|-----------|-----------|---------|---------|-----|
| Volatile   | Organic Compounds           |          |                   |          |                     |           |           |         |         |     |
| Volatile - | Organic Compounds by 8260   | <u>B</u> | Prepared by metho | d Vola   | tiles               |           |           |         |         |     |
| 71-43-2    | Benzene                     | BRL      | 1.0 μg/l          | 1        | SW846 8260B         | 31-Oct-05 | 01-Nov-05 | 5101883 | krl     |     |
| 100-41-4   | Ethylbenzene                | BRL      | 1.0 μg/l          | 1        | u                   | "         | н         | II      | **      |     |
| 1634-04-4  | Methyl tert-butyl ether     | BRL      | 1.0 µg/l          | 1        | "                   | 0         | **        | U       | **      |     |
| 91-20-3    | Naphthalene                 | BRL      | 5.0 µg/l          | 1        | u                   | 0         | 11        | H       | н       |     |
| 108-88-3   | Toluene                     | BRL      | 1.0 µg/l          | 1        | "                   | u         | n         | **      | "       |     |
| 95-63-6    | 1,2,4-Trimethylbenzene      | BRL      | 1.0 µg/l          | 1        | "                   | "         | 11        | II      | *       |     |
| 108-67-8   | 1,3,5-Trimethylbenzene      | BRL      | 1.0 µg/l          | 1        | 0                   | u         | 11        | Ħ       | **      |     |
| 1330-20-7  | m,p-Xylene                  | BRL      | 2.0 μg/l          | 1        |                     | u         | 11        | **      | **      |     |
| 95-47-6    | o-Xylene                    | BRL      | 1.0 µg/l          | 1        | 11                  | 11        | Ħ         | 11      | "       |     |
| Surrogate  | recoveries:                 |          |                   |          |                     |           |           |         |         |     |
| 460-00-4   | 4-Bromofluorobenzene        | 93.3     | 70-130 %          |          | If .                | "         | u         | 11      | **      |     |
| 2037-26-5  | Toluene-d8                  | 99.0     | 70-130 %          |          | I)                  | "         | n         | 0       | *1      |     |
| 17060-07-0 | 1,2-Dichloroethane-d4       | 115      | 70-130 %          |          | H                   | "         | 0         |         | **      |     |
| 1868-53-7  | Dibromofluoromethane        | 117      | 70-130 %          |          | 11                  | "         | U         | "       | "       |     |
| Extracta   | ible Petroleum Hydrocarboi  | ns       |                   |          |                     |           |           |         |         |     |
| Diesel R   | ange Organics               |          | Prepared by metho | d SW8    | 46 3535             |           |           |         |         |     |
| 68476-30-2 | Fuel Oil #2                 | BRL      | 0.2 mg/l          | 1        | 8015BM/ME4.1<br>.25 | 31-Oct-05 | 01-Nov-05 | 5101846 | LK      |     |
| 68476-31-3 | Fuel Oil #4                 | BRL      | 0.2 mg/l          | 1        | "                   | "         | **        | n       | n       |     |
| 68553-00-4 | Fuel Oil #6                 | BRL      | 0.2 mg/l          | 1        | "                   | "         | Ħ         | н       | "       |     |
| M09800000  | Motor Oil                   | BRL      | 0.2 mg/l          | 1        | "                   | 19        | "         | H       | 0       |     |
| 100100000  | Aviation Fuel               | BRL      | 0.2 mg/l          | 1        | "                   | *         | n         | H       |         |     |
|            | Unidentified                | BRL      | 0.2 mg/l          | 1        | "                   | 11        | **        | #1      | 11      |     |
|            | Other Oil                   | BRL      | 0.2 mg/l          | 1        | "                   |           | 11        | 11      | "       |     |
|            | Diesel Range Organics (DRO) | BRL      | 0.2 mg/l          | 1        | 11                  | 11        | н         | "       | 11      |     |
| Surrogate  | recoveries:                 |          |                   |          |                     |           |           |         |         | -   |
| _          | 1-Chlorooctadecane          | 73.3     | 40-140 %          |          | n                   | u         | "         | n       | 11      |     |

Matrix Ground Water Collection Date/Time 19-Oct-05 13:35

| CAS NO.    | Analyte(s)                  | Result   | *RDL/Units        | Dilution | Method Ref.         | Prepared  | Analyzed  | Batch   | Analyst | Flag |
|------------|-----------------------------|----------|-------------------|----------|---------------------|-----------|-----------|---------|---------|------|
| Volatile   | Organic Compounds           |          |                   |          |                     |           |           | ·       |         |      |
| Volatile ( | Organic Compounds by 8260.  | <u>B</u> | Prepared by metho | od Volat | tiles               |           |           |         |         |      |
| 71-43-2    | Benzene                     | BRL      | 1.0 µg/l          | 1        | SW846 8260B         | 31-Oct-05 | 01-Nov-05 | 5101883 | krl     |      |
| 100-41-4   | Ethylbenzene                | BRL      | 1.0 µg/l          | 1        | 11                  | n         | 11        | **      | **      |      |
| 1634-04-4  | Methyl tert-butyl ether     | BRL      | 1.0 µg/l          | 1        | 11                  | ŧı        | 10        | н       | "       |      |
| 91-20-3    | Naphthalene                 | BRL      | 5.0 μg/l          | 1        | "                   | **        | н         | 11      | n       |      |
| 108-88-3   | Toluene                     | BRL      | 1.0 µg/l          | 1        | **                  | 11        | 11        | 11      | 17      |      |
| 95-63-6    | 1,2,4-Trimethylbenzene      | BRL      | 1.0 µg/l          | 1        | н                   | **        | н         | *       | "       |      |
| 108-67-8   | 1,3,5-Trimethylbenzene      | BRL      | 1.0 µg/l          | 1        | "                   | *1        | н         | н       | 19      |      |
| 1330-20-7  | m,p-Xylene                  | BRL      | 2.0 μg/l          | l        | **                  | U         | н         | **      | 11      |      |
| 95-47-6    | o-Xylene                    | BRL      | 1.0 µg/l          | 1        | U                   | u         | **        | "       | "       |      |
| Surrogate  | recoveries:                 |          |                   |          |                     |           |           |         |         |      |
| 460-00-4   | 4-Bromofluorobenzene        | 92.7     | 70-130 %          |          | n                   | n         | **        | **      | "       |      |
| 2037-26-5  | Toluene-d8                  | 99.7     | 70-130 %          |          | 4                   | H         | 11        | #1      | n       |      |
| 17060-07-0 | 1,2-Dichloroethane-d4       | 106      | 70-130 %          |          | 11                  | 'n        | 11        | **      | "       |      |
| 1868-53-7  | Dibromofluoromethane        | 109      | 70-130 %          |          | U                   | "         | "         | "       | "       |      |
| Extracta   | ible Petroleum Hydrocarboi  | ns       |                   |          |                     |           |           |         |         |      |
| Diesel Ro  | ange Organics               |          | Prepared by metho | od SW8   | 46 3535             |           |           |         |         |      |
| 68476-30-2 | Fuel Oil #2                 | BRL      | 0.2 mg/l          | 1        | 8015BM/ME4.1<br>.25 | 31-Oct-05 | 01-Nov-05 | 5101846 | LK      |      |
| 68476-31-3 | Fuel Oil #4                 | BRL      | 0.2 mg/l          | 1        | u u                 | "         | ti        | 0       | "       |      |
| 68553-00-4 | Fuel Oil #6                 | BRL      | 0.2 mg/l          | 1        |                     | "         | ti        | n       | **      |      |
| M09800000  | Motor Oil                   | BRL      | 0.2 mg/l          | 1        | "                   | "         | 11        | 11      | "       |      |
| 100100000  | Aviation Fuel               | BRL      | 0.2 mg/l          | 1        | u                   | 11        | "         | "       | **      |      |
|            | Unidentified                | BRL      | 0.2 mg/l          | 1        | "                   | "         | u         | n       | **      |      |
|            | Other Oil                   | BRL      | 0.2 mg/l          | 1        | 11                  | "         | 11        | u       | **      |      |
|            | Diesel Range Organics (DRO) | BRL      | 0.2 mg/l          | 1        | 11                  | u         | #         | **      | н       |      |
| Surrogate  | recoveries:                 |          |                   |          |                     |           |           |         |         |      |
| 3386-33-2  | 1-Chlorooctadecane          | 60.2     | 40-140 %          |          | "                   | n         | "         | **      | н       |      |

Matrix Ground Water Collection Date/Time 19-Oct-05 12:25

| CAS No.    | Analyte(s)                  | Result        | *RDL/Units L       | Dilution  | Method Ref.         | Prepared  | Analyzed  | Batch   | Analyst       | Flag |
|------------|-----------------------------|---------------|--------------------|-----------|---------------------|-----------|-----------|---------|---------------|------|
| Volatile   | Organic Compounds           |               |                    |           |                     |           |           |         |               |      |
| Volatile   | Organic Compounds by 8260   | <u>B</u>      | Prepared by metho  | d Vola    | tiles               |           |           |         |               |      |
| 71-43-2    | Benzene                     | BRL           | 1.0 µg/l           | 1         | SW846 8260B         | 31-Oct-05 | 01-Nov-05 | 5101883 | krl           |      |
| 100-41-4   | Ethylbenzene                | BRL           | 1.0 µg/l           | i         | n                   | u         | 0         | If      | 11            |      |
| 1634-04-4  | Methyl tert-butyl ether     | BRL           | 1.0 µg/l           | 1         | n                   | U         | 0         | 11      | 11            |      |
| 91-20-3    | Naphthalene                 | BRL           | 5.0 μg/l           | 1         | n                   | "         |           | 11      | If            |      |
| 108-88-3   | Toluene                     | BRL           | 1.0 µg/l           | 1         | U                   | "         |           | 11      | 10            |      |
| 95-63-6    | 1,2,4-Trimethylbenzene      | BRL           | 1.0 µg/l           | 1         | 0                   | "         | 11        | It      | 11            |      |
| 108-67-8   | 1,3,5-Trimethylbenzene      | BRL           | 1.0 µg/l           | 1         | u                   | "         | #         | H       | 11            |      |
| 1330-20-7  | m,p-Xylene                  | BRL           | 2.0 µg/l           | 1         | U                   | "         | If        | It      | 11            |      |
| 95-47-6    | o-Xylene                    | BRL           | 1.0 µg/l           | 1         | U                   | P         | 19        | 11      | n             |      |
| Surrogate  | recoveries:                 |               | - 1/18             | · ······· |                     |           |           |         | ************* |      |
| 460-00-4   | 4-Bromofluorobenzene        | 91.7          | 70-130 %           |           | н                   | н         | u         | 11      | **            |      |
| 2037-26-5  | Toluene-d8                  | 98.0          | 70-130 %           |           | н                   | "         | 11        | 11      | **            |      |
| 17060-07-0 | 1,2-Dichloroethane-d4       | 94.7          | 70-130 %           |           | n                   | U         | 19        | 11      | 0             |      |
| 1868-53-7  | Dibromofluoromethane        | 101           | 70-130 %           |           | 11                  | 0         | 19        | 11      | U             |      |
| Extracta   | ble Petroleum Hydrocarbo    | ns            |                    |           |                     |           |           |         |               |      |
| Diesel R   | ange Organics               |               | Prepared by method | d SW8     | 46 3535             |           |           |         |               |      |
| 68476-30-2 | Fuel Oil #2                 | BRL           | 0.2 mg/l           | 1         | 8015BM/ME4.1<br>.25 | 31-Oct-05 | 01-Nov-05 | 5101846 | LK            |      |
| 68476-31-3 | Fuel Oil #4                 | BRL           | 0.2 mg/l           | 1         | v                   |           | ti        | 11      | 11            |      |
| 68553-00-4 | Fuel Oil #6                 | BRL           | 0.2 mg/l           | 1         | u                   | 11        | u         | #1      | 11            |      |
| M09800000  | Motor Oil                   | BRL           | 0.2 mg/l           | 1         | · ·                 | **        | u         | 11      | 41            |      |
| J00100000  | Aviation Fuel               | BRL           | 0.2 mg/l           | 1         | · ·                 | **        | 11        | n       | 0             |      |
|            | Unidentified                | 0.7           | 0.2 mg/l           | 1         |                     | **        | "         | 11      | u             |      |
|            | Other Oil                   | Calculated as | 0.2 mg/l           | 1         | н                   | u         | "         | 11      | U             |      |
|            | Diesel Range Organics (DRO) | 0.7           | 0.2 mg/l           | 1         | H                   | u         | 11        | 11      | U             |      |
| Surrogate  | recoveries:                 | W-F           |                    |           |                     |           |           |         |               | -    |
|            | 1-Chlorooctadecane          | 90.3          | 40-140 %           |           |                     | 11        | н         | 17      | ti            |      |

Sample Identification MW-28 SA36288-10

Client Project # 08-204262.00

Matrix Oil Collection Date/Time 19-Oct-05 13:20

| CAS No.    | Analyte(s)                   | Result        | *RDL/Units     | Dilution | Method Ref.        | Prepared  | Analyzed  | Batch   | Analyst | Flag |
|------------|------------------------------|---------------|----------------|----------|--------------------|-----------|-----------|---------|---------|------|
| Extracta   | able Petroleum Hydrocarboi   | ns            |                |          |                    |           |           |         |         |      |
| TPH 810    | 00 by GC                     |               | Prepared by me | thod SW8 | 46 3550B           |           |           |         |         |      |
| 8006-61-9  | Gasoline                     | Calculated as | 19200 mg/kg    | 1        | +SW846<br>8100Mod. | 02-Nov-05 | 03-Nov-05 | 5110073 | LK      |      |
| 68476-30-2 | Fuel Oil #2                  | BRL           | 19200 mg/kg    | 1        | U                  | U         | **        | u       | u       |      |
| 68476-31-3 | Fuel Oil #4                  | BRL           | 19200 mg/kg    | 1        | 0                  | 11        | 11        | n       | Ħ       |      |
| 68553-00-4 | Fuel Oil #6                  | BRL           | 19200 mg/kg    | 1        | n                  | n         | 0         | 17      | 0       |      |
| M09800000  | Motor Oil                    | BRL           | 19200 mg/kg    | 1        | 11                 | н         | u         | n       | H       |      |
| 8032-32-4  | Ligroin                      | BRL           | 19200 mg/kg    | 1        | #                  | **        | "         | **      | H       |      |
| J00100000  | Aviation Fuel                | BRL           | 19200 mg/kg    | 1        | 11                 | ti        | n.        | н       | "       |      |
|            | Unidentified                 | 1,000,000     | 19200 mg/kg    | 1        | **                 | 0         | **        | H       | n       |      |
|            | Other Oil                    | Calculated as | 19200 mg/kg    | 1        | "                  | 11        | "         | It      | U       |      |
|            | Total Petroleum Hydrocarbons | 1,000,000     | 19200 mg/kg    | 1        | 0                  | n         | **        | Ħ       | **      |      |
| Surrogate  | recoveries:                  |               |                |          |                    |           |           |         |         |      |
| 3386-33-2  | 1-Chlorooctadecane           | 3600          | 40-140 %       |          | н                  | n         | n         | 17      | H       | S-02 |

| Analyte(s)                                               | Result       | *RDL Units      | Spike<br>Level                         | Source<br>Result | %REC       | %REC<br>Limits   | RPD  | RPD<br>Limit | Flag    |
|----------------------------------------------------------|--------------|-----------------|----------------------------------------|------------------|------------|------------------|------|--------------|---------|
| Batch 5101883 - Volatiles                                |              |                 |                                        |                  |            |                  |      |              |         |
| Blank (5101883-BLK1)                                     |              |                 | Prepared                               | & Analyz         | ed: 31-Oct | :-05             |      |              |         |
| Benzene                                                  | BRL          | 1.0 µg/l        | ······································ | <u>v</u>         |            |                  |      |              |         |
| Ethylbenzene                                             | BRL          | 1.0 µg/l        |                                        |                  |            |                  |      |              |         |
| Methyl tert-butyl ether                                  | BRL          | 1.0 µg/l        |                                        |                  |            |                  |      |              |         |
| Naphthalene                                              | BRL          | 5.0 μg/l        |                                        |                  |            |                  |      |              |         |
| Toluene                                                  | BRL          | 1.0 µg/l        |                                        |                  |            |                  |      |              |         |
| 1,2,4-Trimethylbenzene                                   | BRL          | 1.0 µg/l        |                                        |                  |            |                  |      |              |         |
| 1,3,5-Trimethylbenzene                                   | BRL          | 1.0 µg/l        |                                        |                  |            |                  |      |              |         |
| m,p-Xylene                                               | BRL          | 2.0 µg/l        |                                        |                  |            |                  |      |              |         |
| o-Xylene                                                 | BRL          | 1.0 µg/l        |                                        |                  |            |                  |      |              |         |
| Surrogate: 4-Bromofluorobenzene                          | 28.7         | μg/l            | 30.0                                   |                  | 95.7       | 70-130           |      |              |         |
| Surrogate: Toluene-d8                                    | 27.8         | μg/l            | 30.0                                   |                  | 92.7       | 70-130           |      |              |         |
| Surrogate: 1,2-Dichloroethane-d4                         | 32.9         | μg/l            | 30.0                                   |                  | 110        | 70-130           |      |              |         |
| Surrogate: Dibromofluoromethane                          | 32.2         | μg/l            | 30.0                                   |                  | 107        | 70-130           |      |              |         |
| LCS (5101883-BS1)                                        | •            |                 | Prepared                               | & Analyz         | ed: 31-Oct | -05              |      |              |         |
| Benzene                                                  | 21.8         | μg/l            | 20.0                                   |                  | 109        | 70-130           |      |              |         |
| Ethylbenzene                                             | 21.7         | μg/l            | 20.0                                   |                  | 108        | 70-130           |      |              |         |
| Methyl tert-butyl ether                                  | 24.0         | μg/l            | 20.0                                   |                  | 120        | 70-130           |      |              |         |
| Naphthalene                                              | 23.3         | μg/l            | 20.0                                   |                  | 116        | 70-130           |      |              |         |
| Toluene                                                  | 21.2         | μg/l            | 20.0                                   |                  | 106        | 70-130           |      |              |         |
| 1,2,4-Trimethylbenzene                                   | 22.6         | μg/l            | 20.0                                   |                  | 113        | 70-130           |      |              |         |
| 1,3,5-Trimethylbenzene                                   | 21.7         | μg/l            | 20.0                                   |                  | 108        | 70-130           |      |              |         |
| m,p-Xylene                                               | 47.5         | μg/l            | 40.0                                   |                  | 119        | 70-130           |      |              |         |
| o-Xylene                                                 | 23.7         | μg/l            | 20.0                                   |                  | 118        | 70-130           |      |              |         |
| Surrogate: 4-Bromofluorobenzene                          | 29.9         | μg/l            | 30.0                                   |                  | 99.7       | 70-130           |      |              |         |
| Surrogate: Toluene-d8                                    | 29.7         | μg/l            | 30.0                                   |                  | 99.0       | 70-130           |      |              |         |
| Surrogate: 1,2-Dichloroethane-d4                         | 30.5         | μg/l            | 30.0                                   |                  | 102        | 70-130           |      |              |         |
| Surrogate: Dibromofluoromethane                          | 31.4         | μg/l            | 30.0                                   |                  | 105        | 70-130           |      |              |         |
| Matrix Spike (5101883-MS1)                               |              | rce: SA36182-04 | Prepared:                              | 31-Oct-0         | 5 Analyze  | d: 01-Nov-       | .05  |              |         |
| Benzene                                                  | 14.3         | μg/l            | 20.0                                   | BRL              | 71.5       | 70-130           |      |              |         |
| Chlorobenzene                                            | 18.2         | μg/l            | 20.0                                   | BRL              | 91.0       | 70-130           |      |              |         |
| 1,1-Dichloroethene                                       | 8.9          | μg/l            | 20.0                                   | BRL              | 44.5       | 70-130           |      |              | QM-07   |
| Toluene                                                  | 16.3         | μg/l            | 20.0                                   | BRL              | 81.5       | 70-130           |      |              | Q 07    |
| Trichloroethene                                          | 15.0         | μg/l            | 20.0                                   | BRL              | 75.0       | 70-130           |      |              |         |
|                                                          | 30.0         | μg/l            | 30.0                                   |                  | 100        | 70-130           |      |              |         |
| Surrogate: 4-Bromofluorobenzene<br>Surrogate: Toluene-d8 | 31.4         | μg/l<br>μg/l    | 30.0                                   |                  | 105        | 70-130           |      |              |         |
| Surrogate: 1,2-Dichloroethane-d4                         | 30.9         | μg/l            | .30.0                                  |                  | 103        | 70-130           |      |              |         |
| Surrogate: Dibromofluoromethane                          | 30.6         | μg/l            | 30.0                                   |                  | 102        | 70-130           |      |              |         |
|                                                          |              | rce: SA36182-04 |                                        | 31_Oct=0         |            | d: 01-Nov-       | .05  |              |         |
| Matrix Spike Dup (5101883-MSD1)                          |              |                 | 20.0                                   | BRL              | 71.5       | 70-130           | 0.00 | 30           |         |
| Benzene                                                  | 14.3         | μg/l            | 20.0                                   | BRL<br>BRL       | 93.0       | 70-130           | 2.17 | 30           |         |
| Chlorobenzene                                            | 18.6<br>10.4 | μg/l<br>σ/l     | 20.0                                   | BRL              | 52.0       | 70-130           | 15.5 | 30           | QM-07   |
| 1,1-Dichloroethene Toluene                               | 16.6         | μg/l<br>μg/l    | 20.0                                   | BRL              | 83.0       | 70-130           | 1.82 | 30           | QIVI 07 |
| Trichloroethene                                          | 16.1         | μg/l            | 20.0                                   | BRL              | 80.5       | 70-130           | 7.07 | 30           |         |
|                                                          | 30.0         |                 | 30.0                                   |                  | 100        | 70-130           | ,    |              | • • • • |
| Surrogate: 4-Bromofluorobenzene                          | 30.0<br>31.6 | μg/l<br>ug/l    | 30.0<br>30.0                           |                  | 100<br>105 | 70-130<br>70-130 |      |              |         |
| Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4   | 31.6<br>28.6 | μg/l<br>μg/l    | 30.0                                   |                  | 95.3       | 70-130<br>70-130 |      |              |         |
| Surrogate: Dibromofluoromethane                          | 29.5         | μg/I<br>μg/I    | 30.0                                   |                  | 98.3       | 70-130           |      |              |         |
| Batch 5110026 - Volatiles                                | 27.3         | μ6/1            | 50.0                                   | •                |            |                  |      |              |         |
| Blank (5110026-BLK1)                                     |              |                 | Prepared                               | & Analyz         | ed: 01-No  | v-05             |      |              |         |
| Benzene                                                  | BRL          | 1.0 μg/l        |                                        |                  |            |                  |      |              |         |
| Ethylbenzene                                             | BRL          | 1.0 μg/l        |                                        |                  |            |                  |      |              |         |
| Methyl tert-butyl ether                                  | BRL          | 1.0 μg/l        |                                        |                  |            |                  |      |              |         |

| Analyte(s)                       | Result | *RDL Units      | Spike<br>Level | Source<br>Result | %REC               | %REC<br>Limits | RPD   | RPD<br>Limit | Flag                                  |
|----------------------------------|--------|-----------------|----------------|------------------|--------------------|----------------|-------|--------------|---------------------------------------|
| Batch 5110026 - Volatiles        |        |                 |                |                  |                    |                |       |              | ·                                     |
| Blank (5110026-BLK1)             |        |                 | Prepared       | & Analyze        | ed: 01-No          | v-05           |       |              |                                       |
| Naphthalene                      | BRL    | 1.0 µg/l        |                |                  |                    |                |       |              |                                       |
| Toluene                          | BRL    | 1.0 µg/l        |                |                  |                    |                |       |              |                                       |
| 1,2,4-Trimethylbenzene           | BRL    | 1.0 µg/l        |                |                  |                    |                |       |              |                                       |
| 1,3,5-Trimethylbenzene           | BRL    | 1.0 µg/l        |                |                  |                    |                |       |              |                                       |
| m,p-Xylene                       | BRL    | 2.0 μg/l        |                |                  |                    |                |       |              |                                       |
| o-Xylene                         | BRL    | 1.0 µg/l        |                |                  |                    |                |       |              |                                       |
| Surrogate: 4-Bromofluorobenzene  | 26.8   | μg/l            | 30.0           |                  | 89.3               | 70-130         |       |              |                                       |
| Surrogate: Toluene-d8            | 30.0   | μg/l            | 30.0           |                  | 100                | 70-130         |       |              |                                       |
| Surrogate: 1,2-Dichloroethane-d4 | 31.3   | μg/l            | 30.0           |                  | 104                | 70-130         |       |              |                                       |
| Surrogate: Dibromofluoromethane  | 31.4   | μg/l            | 30.0           |                  | 105                | 70-130         |       |              |                                       |
| LCS (5110026-BS1)                |        |                 | Prepared       | & Analyze        | d: 01-No           | v-05           |       |              |                                       |
| Benzene                          | 21.5   | μg/l            | 20.0           |                  | 108                | 70-130         |       |              |                                       |
| Ethylbenzene                     | 22.3   | μg/l            | 20.0           |                  | 112                | 70-130         |       |              |                                       |
| Methyl tert-butyl ether          | 26.8   | μg/l            | 20.0           |                  | 134                | 70-130         |       |              | QC-1                                  |
| Naphthalene                      | 23.8   | μg/l            | 20.0           |                  | 119                | 70-130         |       |              |                                       |
| Toluene                          | 23.9   | μg/l            | 20.0           |                  | 120                | 70-130         |       |              |                                       |
| 1,2,4-Trimethylbenzene           | 22.3   | μg/l            | 20.0           |                  | 112                | 70-130         |       |              |                                       |
| 1,3,5-Trimethylbenzene           | 21.6   | μg/l            | 20.0           |                  | 108                | 70-130         |       |              |                                       |
| m,p-Xylene                       | 46.9   | μg/l            | 40.0           |                  | 117                | 70-130         |       |              |                                       |
| o-Xylene                         | 23.9   | μg/l            | 20.0           |                  | 120                | 70-130         |       |              |                                       |
| Surrogate: 4-Bromofluorobenzene  | 30.6   | μg/l            | 30.0           |                  | 102                | 70-130         |       |              |                                       |
| Surrogate: Toluene-d8            | 34.8   | μg/l            | 30.0           |                  | 116                | 70-130         |       |              |                                       |
| Surrogate: 1,2-Dichloroethane-d4 | 30.7   | μg/l            | 30.0           |                  | 102                | 70-130         |       |              |                                       |
| Surrogate: Dibromofluoromethane  | 33.5   | μg/l            | 30.0           |                  | 112                | 70-130         |       |              |                                       |
| LCS Dup (5110026-BSD1)           |        |                 | Prepared       | & Analyze        | d: 01 <b>-</b> Nov | v-05           |       |              |                                       |
| Benzene                          | 20.8   | μg/l            | 20.0           |                  | 104                | 70-130         | 3.77  | 30           |                                       |
| Ethylbenzene                     | 22.1   | μg/l            | 20.0           |                  | 110                | 70-130         | 1.80  | 30           |                                       |
| Methyl tert-butyl ether          | 22.0   | μg/l            | 20.0           |                  | 110                | 70-130         | 19.7  | 30           |                                       |
| Naphthalene                      | 23.1   | μg/l            | 20.0           |                  | 116                | 70-130         | 2.55  | 30           |                                       |
| Toluene                          | 20.2   | μg/l            | 20.0           |                  | 101                | 70-130         | 17.2  | 30           |                                       |
| 1,2,4-Trimethylbenzene           | 21.7   | μg/l            | 20.0           |                  | 108                | 70-130         | 3.64  | 30           |                                       |
| 1,3,5-Trimethylbenzene           | 21.5   | μg/l            | 20.0           |                  | 108                | 70-130         | 0.00  | 30           |                                       |
| m,p-Xylene                       | 46.3   | μg/l            | 40.0           |                  | 116                | 70-130         | 0.858 | 30           |                                       |
| o-Xylene                         | 23.8   | μg/l            | 20.0           |                  | 119                | 70-130         | 0.837 | 30           | androstal translation to the roots of |
| Surrogate: 4-Bromofluorobenzene  | 31.0   | μg/l            | 30.0           |                  | 103                | 70-130         |       |              |                                       |
| Surrogate: Toluene-d8            | 29.3   | μg/l            | 30.0           |                  | 97.7               | 70-130         |       |              |                                       |
| Surrogate: 1,2-Dichloroethane-d4 | 29.4   | μg/l            | 30.0           |                  | 98.0               | 70-130         |       |              |                                       |
| Surrogate: Dibromofluoromethane  | 30.8   | μg/l            | 30.0           |                  | 103                | 70-130         |       |              |                                       |
| Matrix Spike (5110026-MS1)       | Sou    | rce: SA36182-02 | Prepared       | & Analyze        | d: 01-Nov          | v-05           |       |              |                                       |
| Benzene                          | 23.6   | μg/l            | 20.0           | BRL              | 118                | 70-130         |       |              |                                       |
| Chlorobenzene                    | 21.5   | μg/l            | 20.0           | BRL              | 108                | 70-130         |       |              |                                       |
| 1,1-Dichloroethene               | 31.1   | μg/l            | 20.0           | BRL              | 156                | 70-130         |       |              | QM-07                                 |
| Toluene                          | 23.5   | μg/l            | 20.0           | BRL              | 118                | 70-130         |       |              |                                       |
| Trichloroethene                  | 21.8   | μg/l            | 20.0           | BRL              | 109                | 70-130         |       |              |                                       |
| Surrogate: 4-Bromofluorobenzene  | 31.3   | μg/l            | 30.0           |                  | 104                | 70-130         |       |              |                                       |
| Surrogate: Toluene-d8            | 29.7   | μg/l            | 30.0           |                  | 99.0               | 70-130         |       |              |                                       |
| Surrogate: 1,2-Dichloroethane-d4 | 30.2   | μg/l            | 30.0           |                  | 101                | 70-130         |       |              |                                       |
| Surrogate: Dibromofluoromethane  | 33.0   | μg/l            | 30.0           |                  | 110                | 70-130         |       |              |                                       |
| Matrix Spike Dup (5110026-MSD1)  | Sou    | rce: SA36182-02 | Prepared       | & Analyze        | d: 01-Nov          | v-05           |       |              |                                       |
| Benzene                          | 24.4   | μg/l            | 20.0           | BRL              | 122                | 70-130         | 3.33  | 30           |                                       |
| Chlorobenzene                    | 23.5   | μg/l            | 20.0           | BRL              | 118                | 70-130         | 8.85  | 30           |                                       |
| 1,1-Dichloroethene               | 40.6   | μg/l            | 20.0           | BRL              | 203                | 70-130         | 26.2  | 30           | QM-07                                 |

| Analyte(s)                       | Result | *RDL Units      | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD  | RPD<br>Limit | Flag |
|----------------------------------|--------|-----------------|----------------|------------------|------------|----------------|------|--------------|------|
| Batch 5110026 - Volatiles        |        |                 |                |                  |            |                |      |              |      |
| Matrix Spike Dup (5110026-MSD1)  | Sou    | rce: SA36182-02 | Prepared       | & Analyz         | ed: 01-Nov | v-05           |      |              |      |
| Toluene                          | 25.9   | μg/l            | 20.0           | BRL              | 130        | 70-130         | 9.68 | 30           |      |
| Trichloroethene                  | 23.1   | μg/l            | 20.0           | BRL              | 116        | 70-130         | 6.22 | 30           |      |
| Surrogate: 4-Bromofluorobenzene  | 30.8   | μg/l            | 30.0           | •                | 103        | 70-130         |      |              |      |
| Surrogate: Toluene-d8            | 32.4   | μg/l            | 30.0           |                  | 108        | 70-130         |      |              |      |
| Surrogate: 1,2-Dichloroethane-d4 | 31.5   | μg/l            | 30.0           |                  | 105        | 70-130         |      |              |      |
| Surrogate: Dibromofluoromethane  | 35.3   | μg/l            | 30.0           |                  | 118        | 70-130         |      |              |      |

# **Extractable Petroleum Hydrocarbons - Quality Control**

| •                             |               | *DD1 *1 *       | Spike     | Source   | 0/050      | %REC       | DDD                                                                                                                      | RPD   | ירו  |  |  |
|-------------------------------|---------------|-----------------|-----------|----------|------------|------------|--------------------------------------------------------------------------------------------------------------------------|-------|------|--|--|
| Analyte(s)                    | Result        | *RDL Units      | Level     | Result   | %REC       | Limits     | KPD                                                                                                                      | Limit | Flag |  |  |
| Batch 5101846 - SW846 3535    |               |                 |           |          |            |            |                                                                                                                          |       |      |  |  |
| Blank (5101846-BLK1)          |               |                 | Prepared: | 31-Oct-0 | 5 Analyze  | d: 01-Nov  | 0-140<br>0-140<br>0-140<br>0-140<br>0-140<br>03-Nov-05<br>0-140<br>03-Nov-05<br>0-140<br>03-Nov-05<br>0-140<br>03-Nov-05 |       |      |  |  |
| Fuel Oil #2                   | BRL           | 0.1 mg/l        |           |          |            |            |                                                                                                                          |       |      |  |  |
| Fuel Oil #4                   | BRL           | 0.1 mg/l        |           |          |            |            |                                                                                                                          |       |      |  |  |
| Fuel Oil #6                   | BRL           | 0.1 mg/l        |           |          |            |            |                                                                                                                          |       |      |  |  |
| Motor Oil                     | BRL           | 0.1 mg/l        |           |          |            |            |                                                                                                                          |       |      |  |  |
| Aviation Fuel                 | BRL           | 0.1 mg/l        |           |          |            |            |                                                                                                                          |       |      |  |  |
| Unidentified                  | BRL           | 0.1 mg/l        |           |          |            |            |                                                                                                                          |       |      |  |  |
| Other Oil                     | BRL           | 0.1 mg/l        |           |          |            |            |                                                                                                                          |       |      |  |  |
| Diesel Range Organics (DRO)   | BRL           | 0.1 mg/l        |           |          |            |            |                                                                                                                          |       |      |  |  |
| Surrogate: 1-Chlorooctadecane | 0.0386        | mg/l            | 0.0500    |          | 77.2       | 40-140     |                                                                                                                          |       |      |  |  |
| LCS (5101846-BS1)             |               |                 | Prepared: | 31-Oct-0 | 5 Analyze  | d: 01-Nov  | -05                                                                                                                      |       |      |  |  |
| Fuel Oil #2                   | 9.4           | 0.1 mg/l        | 10.0      |          | 94.0       | 40-140     |                                                                                                                          |       |      |  |  |
| Surrogate: 1-Chlorooctadecane | 0.107         | mg/l            | 0.0500    |          | 214        | 40-140     |                                                                                                                          |       | S-0. |  |  |
| Batch 5110073 - SW846 3550B   |               |                 |           |          |            |            |                                                                                                                          |       |      |  |  |
| Blank (5110073-BLK1)          |               |                 | Prepared: | 02-Nov-0 | )5 Analyze | d: 03-Nov  | <b>/-</b> 05                                                                                                             |       |      |  |  |
| Gasoline                      | BRL           | 133 mg/kg       |           |          |            |            |                                                                                                                          |       |      |  |  |
| Fuel Oil #2                   | BRL           | 133 mg/kg       |           |          |            |            |                                                                                                                          |       |      |  |  |
| Fuel Oil #4                   | BRL           | 133 mg/kg       |           |          |            |            |                                                                                                                          |       |      |  |  |
| Fuel Oil #6                   | BRL           | 133 mg/kg       |           |          |            |            |                                                                                                                          |       |      |  |  |
| Motor Oil                     | BRL           | 133 mg/kg       |           |          |            |            |                                                                                                                          |       |      |  |  |
| Ligroin                       | BRL           | 133 mg/kg       |           |          |            |            |                                                                                                                          |       |      |  |  |
| Aviation Fuel                 | BRL           | 133 mg/kg       |           |          |            |            |                                                                                                                          |       |      |  |  |
| Unidentified                  | BRL           | 133 mg/kg       |           |          |            |            |                                                                                                                          |       |      |  |  |
| Other Oil                     | BRL           | 133 mg/kg       |           |          |            |            |                                                                                                                          |       |      |  |  |
| Total Petroleum Hydrocarbons  | BRL           | 133 mg/kg       |           |          |            |            |                                                                                                                          |       |      |  |  |
| Surrogate: 1-Chlorooctadecane | 3.71          | mg/kg           | 3.33      |          | 111        | 40-140     |                                                                                                                          |       |      |  |  |
| LCS (5110073-BS1)             |               |                 | Prepared: | 02-Nov-0 | 5 Analyze  | :d: 03-Nov | <b>/-</b> 05                                                                                                             |       |      |  |  |
| Fuel Oil #2                   | 588           | 13.3 mg/kg      | 667       |          | 88.2       | 40-140     |                                                                                                                          |       |      |  |  |
| Duplicate (5110073-DUP1)      | Sou           | rce: SA36288-10 | Prepared: | 02-Nov-0 | )5 Analyze | d: 03-Nov  | ⁄-05                                                                                                                     |       |      |  |  |
| Gasoline                      | Calculated as | 18200 mg/kg     |           | BRL      |            |            |                                                                                                                          |       |      |  |  |
| Fuel Oil #2                   | BRL           | 18200 mg/kg     |           | BRL      |            |            |                                                                                                                          |       |      |  |  |
| Fuel Oil #4                   | BRL           | 18200 mg/kg     |           | BRL      |            |            |                                                                                                                          |       |      |  |  |
| Fuel Oil #6                   | BRL           | 18200 mg/kg     |           | BRL      |            |            |                                                                                                                          | 50    |      |  |  |
| Motor Oil                     | BRL           | 18200 mg/kg     |           | BRL      |            |            |                                                                                                                          | 50    |      |  |  |
| Ligroin                       | BRL           | 18200 mg/kg     |           | BRL      |            |            |                                                                                                                          | 50    |      |  |  |
| Aviation Fuel                 | BRL           | 18200 mg/kg     |           | BRL      |            |            |                                                                                                                          | 50    |      |  |  |
| Unidentified                  | 1000000       | 18200 mg/kg     |           | 1000000  |            |            | 0.00                                                                                                                     | 50    |      |  |  |
| Other Oil                     | Calculated as | 18200 mg/kg     |           | BRL      |            |            |                                                                                                                          | 50    |      |  |  |
| Total Petroleum Hydrocarbons  | 1000000       | 18200 mg/kg     |           | 1000000  |            |            | 0.00                                                                                                                     | 50    |      |  |  |
| Surrogate: 1-Chlorooctadecane | 12400         | mg/kg           | 456       |          | NR         | 40-140     |                                                                                                                          |       | S-0  |  |  |
|                               |               |                 |           |          |            |            |                                                                                                                          |       |      |  |  |

### **Notes and Definitions**

\*TPH Calculated as

QC-1 Analyte out of acceptance range.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable

LCS recovery.

S-02 The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic

compounds present in the sample extract.

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

### Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc.

Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel

Fuel Oil #4 - includes #4 fuel oil

Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil

Motor Oil - includes virgin and waste automobile oil

Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha

Aviation Fuel - includes kerosene, Jet A and JP-4

Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as \*TPH (Calculated as).

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Method Blank: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Brown